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Abstract

An analytical solution is given for free vibration of a simply supported rectangular plate made of an incompressible

linear elastic isotropic material. Through-the-thickness modes of vibration valid for compressible and incompressible

materials and missed by previous investigators are also identified.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Srinivas et al. [1] gave in 1970 an analytical solution for the vibration of simply supported homogeneous
thick rectangular laminated plates. Since then the technique has been extended to piezoelectric and hybrid
plates; e.g. see Refs. [2,3]. Batra and Aimmanee [4] recently pointed out some of the frequencies missed by
Srinivas et al. [1] and others who employed the same approach. All these and several other investigations (e.g.
see Refs. [5,6]) assume that the plate material is compressible. Because of the increasing use of rubberlike
materials and the realization that many biological materials can be modeled as incompressible, we provide
here an analytical solution for free vibration of a simply supported plate made of a homogeneous and
isotropic incompressible linear elastic material. Of course, only isochoric (i.e., volume preserving)
deformations are admissible in an incompressible body; thus it can undergo only pure distortional
deformations. Corresponding to the constraint of incompressibility, the constitutive relation involves a
hydrostatic pressure that cannot be determined from the deformation field but is found from a solution of the
balance of linear momentum and traction (i.e., natural) boundary conditions prescribed at least on a part of
the boundary of the body. For a displacement boundary-value problem the pressure field can be found only to
within an arbitrary constant. For free vibrations of a plate the top and the bottom surfaces are traction free,
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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and the pressure field is uniquely determined. The analytical solution provides benchmark frequencies for
comparison with those computed from a plate theory. These are needed to ensure that frequencies obtained by
taking the limit of results as Poisson’s ratio approaches 0.5 are indeed correct. We also find additional
frequencies missed in Ref. [4] and other previous analyses employing Srinivas et al.’s [1] technique.

For a simply supported square and a rectangular plate of aspect ratios (thickness/larger in-plane dimension)
1=4; 1=8; 1=12 and 1=20 we give numerical values of analytical frequencies.

2. Formulation of the problem

In rectangular Cartesian coordinates and in the absence of body forces infinitesimal deformations of an
incompressible body are governed by the following balance of mass and the balance of linear momentum:

ui;i ¼ 0, (1a)

r €ui ¼ sij;j, (1b)

for i; j ¼ 1; 2; 3.
Here r is the stress tensor, u the displacement, r40 the mass density, a superimposed dot indicates

differentiation with respect to time t, sij;j ¼ qsij=qxj, x the present position of a material point, and a repeated
index implies summation over the range of the index. Eq. (1a) implies that deformations are isochoric or
volume preserving and hence the mass density stays constant. The balance of moment of momentum is
identically satisfied by requiring that the stress tensor r be symmetric. For an incompressible linear elastic
isotropic material

sij ¼ �pdij þ 2meij , (2a)

eij ¼ ðui;j þ uj;iÞ=2, (2b)

where p is the hydrostatic pressure not determined from the infinitesimal strain tensor e, dij is the Kronecker
delta, and m40 is the shear modulus. Substitution for e from Eq. (2b) into Eq. (2a) and for r from Eq. (2a)
into Eq. (1b) gives

r €ui ¼ �p;i þ mui;jj. (3)

Here we have assumed that the body is homogeneous; thus m and r are constants.
For a simply supported rectangular plate occupying the region ½0;Lx� � ½0;Ly� � ½0; h�, boundary conditions

are listed below:

u2 ¼ u3 ¼ 0; s11 ¼ 0 on x1 ¼ 0; Lx; (4a)

u1 ¼ u3 ¼ 0; s22 ¼ 0 on x2 ¼ 0; Ly; (4b)

si3 ¼ 0 on x3 ¼ 0; h. (4c)

Thus the top and the bottom surfaces of the plate are traction free. The lateral deflection u3 and the normal
tractions vanish on all four edge surfaces. The boundary conditions given in Eq. (4) are not easily realized in a
laboratory where the plate edges are typically supported on rollers or sharp knife wedges. However, they have
been widely used since Srinivas et al. [1] presented analytical solutions for free vibrations of a rectangular plate
made of a compressible linear elastic material. For the steady-state vibration problem no initial conditions are
needed.

A difference between the problem for compressible and incompressible materials is that for the former
unknowns are displacements but for the latter unknowns are displacements and the pressure field. The
pressure field cannot be determined from a knowledge of displacements or strains and is to be found as a part
of the solution of the problem. The pressure field can be found uniquely only if normal surface tractions are
prescribed on a part of the boundary. Whereas all displacement fields are admissible in a body comprised of a
compressible material, only isochoric deformations are admissible in a body made of an incompressible
material.
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3. Analytical solution

In order to solve for free vibrations of a simply supported rectangular plate we assume that Eqs. (1)–(4)
have a solution of the form

u1 ¼
X1

m;n¼0

Umn
1 ðx3Þ cosMx1 sinNx2e

iot, (5a)

u2 ¼
X1

m;n¼0

Umn
2 ðx3Þ sinMx1 cosMx2e

iot, (5b)

u3 ¼
X1

m;n¼0

Umn
3 ðx3Þ sinMx1 sinNx2e

iot, (5c)

p ¼
X1

m;n¼0

Pmnðx3Þ sinMx1 sinNx2e
iot, (5d)

M ¼
mp
Lx

; N ¼
np
Ly

. (5e,f)

Here m and n are integers, Umn
1 ; Umn

2 ; Umn
3 and Pmn are functions of x3 that are to be determined, o is a

natural frequency and t is time. The form, Eqs. (5a)–(5c), of displacements is identical to that assumed by
Srinivas et al. [1] except that we allow m and/or n to take the value zero whereas they did not, and we have an
additional unknown, namely, the pressure field p. Here we have postulated a similar expression for the
hydrostatic pressure p. Batra and Aimmanee [4] have pointed out that the lower limit in Eq. (5) ought to be 0
rather than 1 as has been assumed in numerous previous studies, e.g. see Refs. [2,3,7–9]. Assuming that
the infinite series in Eq. (5) are uniformly convergent, we substitute for p and u from Eq. (5) into Eq. (3) and
Eq. (1a) and obtainX1

m;n¼0

f�MPmn þ ð�mM2 � mN2 þ md2
z þ ro2ÞUmn

1 g cosMx1 sinNx2 ¼ 0,

X1
m;n¼0

�NPmn þ ð�mM2 � mN2 þ md2
z þ ro2ÞUmn

2

� �
sinMx1 cosNx2 ¼ 0,

X1
m;n¼0

f�dzPmn þ ð�mM2 � mN2 þ md2
z þ ro2ÞUmn

3 g sinMx1 sinNx2 ¼ 0,

X1
m;n¼0

f�MUmn
1 �NUmn

2 þ dzUmn
3 g sinMx1 sinNx2 ¼ 0 ð6Þ

and dz and d2
z denote the first and the second derivative with respect to z ¼ x3.

Following the same procedure as that used in Ref. [1], we conclude that for each ðm; nÞ combination the
nontrivial solution of Eq. (6) is

Umn
1

Umn
2

Umn
3

Pmn

8>>><
>>>:

9>>>=
>>>;
¼

M �M fM fM N N

N �N fN fN �M �M

g g g2 �g2 0 0

ro2 �ro2 0 0 0 0

2
66664

3
77775

C1egz

C2e�gz

C3e
fz

C4e
�fz

C5e
fz

C6e
�fz

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
, (7)

where C1;C2; . . . ;C6 are six arbitrary constants, and

f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 �

ro2

m

s
; g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þN2

p
. (8)
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With the displacement vector u and the pressure p defined by Eq. (5), boundary conditions given in Eqs. (4a)
and (4b) on edges x1 ¼ 0; Lx and x2 ¼ 0; Ly are identically satisfied. Furthermore, boundary conditions given
in Eq. (4c) on the top and the bottom surfaces of the plate determine C1;C2; . . . ;C6, and lead to the following
characteristic equation:

½8g3f ðg2 þ f 2
Þ
2
ð1� cosh fh cosh ghÞ

þ f16g6f 2
þ ðg2 þ f 2

Þ
4
g sinh fh sinh gh�f 2 sinh fh ¼ 0. ð9Þ

The term in square brackets is the same as that in Ref. [1] where the material of the plate was assumed to be
compressible. Eq. (9) is satisfied when either

f ¼ 0, (10a)

or

sinhðfhÞ ¼ 0, (10b)

or

8g3f ðg2 þ f 2
Þ
2
ð1� cosh fh cosh ghÞ

þ f16g6f 2
þ ðg2 þ f 2

Þ
4
g sinhðfhÞ sinhðghÞ ¼ 0. ð11Þ

Eq. (10a) is a special case of Eq. (10b) since f ¼ 0 is also a solution of Eq. (10b). For Eq. (10b) to be satisfied

f ¼
iap
h
; a ¼ 0; 1; 2; . . . , (12)

in which case C1 ¼ C2 ¼ 0. The corresponding frequencies and mode-shapes are given by

o ¼
ffiffiffi
m
r

r
g2 þ

a2p2

h2

� �1=2

; a ¼ 0; 1; 2; . . . , (13)

Umn
1

Umn
2

Umn
3

Pmn

8>>><
>>>:

9>>>=
>>>;
¼ C7

�M sin
apz

h

� �
�N sin

apz

h

� �
ap
h
cos

apz

h

� �
0

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
þ C8

N cos
apz

h

� �
�M cos

apz

h

� �
0

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
, (14)
Table 1

For ðm; nÞ ¼ ð1; 0Þ; ð1; 1Þ; ð2; 0Þ; and ð2; 1Þ first-three natural frequencies and mode shapes of vibration of a thick square rubber plate with

h=Lx ¼ 1=4; (i) and (o) in column 2 following a value of the frequency indicate, respectively, the in-plane and the out-of-plane mode of

vibration

ðm; nÞ O fC1;C2; . . . ;C6g

(1,0) 0.785 (i) f0; 0; 0; 0; 0:707; 0:707g
3.238 (i) f0; 0; 0; 0; 0:707; 0; 707g
6.332 (i) f0; 0; 0; 0; 0:707; 0:707g

(1,1) 0.577 (o) f0:219; 0:666; �0:257; 0:665; 0; 0g
1.111 (i) f0; 0; 0; 0; 0:707; 0:707g
2.111 (i) f�0:263; 0:799; 0:299þ 0:238i; �0:299þ 0:238i; 0; 0g

(2,0) 1.571 (i) f0; 0; 0; 0; 0:707; 0:707g
3.512 (i) f0; 0; 0; 0; 0:707; 0:707g
6.477 (i) f0; 0; 0; 0; 0:707; 0:707g

(2,1) 1.186 (o) f�0:140; �0:810; 0:151; 0:550; 0; 0g
1.756 (i) f0; 0; 0; 0; 0:707; 0:707g
3.099 (i) f�0:145; 0:839; 0:355þ 0:107i; �0:355þ 0:107i; 0; 0g
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where C7a0 only when g2 þ f 2
¼ 0. C7 and C8 are arbitrary constants. These modes of vibration

have been identified in Ref. [1] on the assumption that na0:5. The present analysis shows their
validity even when n ¼ 0:5. The modes with C7 ¼ 0 correspond to thickness modes in which
displacement u3 ¼ 0. Whereas in Srinivas et al.’s solution [1] the first thickness mode corresponds to
a ¼ 1 and m ¼ n ¼ 1, in our case it corresponds to a ¼ 0 and either m ¼ 1, n ¼ 0 or m ¼ 0, n ¼ 1
whichever has a lower frequency. If ma0 and n ¼ 0, then the frequency o and the corresponding mode shapes
are given by

o2 ¼
m
r

mp
Lx

� �2

þ
ap
h

� �2 !
; ðu1; u2; u3Þ ¼ 0; A cos

apz

h
sin

mpx1

Lx

; 0

� �
, (15)
U1
mn

(z)/U1
mn

(0) U2
mn

(z)/U2
mn

(0)

U3
mn

(z)/U3
mn

(0) P
mn

(z)/P
mn

(0)
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Fig. 1. For ðm; nÞ ¼ ð1; 0Þ and ð1; 1Þ through-the-thickness variation of the normalized displacement components and the pressure for three

thickness modes of vibration. (a) ——1st out-of-plane for ð1; 1Þ, O ¼ 0:577; – – – –2nd in-plane for ð1; 1Þ, O ¼ 1:11; and –��–��–��2nd in-

plane for ð1; 1Þ, O ¼ 2:11; (b) – – – – 1st in-plane for ð1; 0Þ, O ¼ 3:238; –� –�–�–2nd in-plane for ð1; 0Þ, O ¼ 0:785; .........3rd in-plane for ð1; 0Þ,
O ¼ 6:332; ——1st out-of-plane for ð1; 0Þ, O ¼ 0:577; – – – –1st in-plane for ð1; 0Þ, O ¼ 1:111; and –��–��–��–2nd in-plane for ð1; 0Þ,
O ¼ 2:111; (c) ——1st out-of-plane for ð1; 1Þ, O ¼ 2:111 and –��–��–�� 2nd in-plane for ð1; 1Þ, O ¼ 0:577; and (d) ——1st out-of-plane for

ð1; 1Þ, O ¼ 0:577 and –��–��–��2nd in-plane for ð1; 1Þ, O ¼ 2:111:
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where A is a constant. Similarly if m ¼ 0 and na0, then the frequency o and the corresponding mode shapes
are given by

o2 ¼
m
r

np
Ly

� �2

þ
ap
h

� �2 !
; ðu1; u2; u3Þ ¼ A cos

apz

h
sin

npx2

Ly

; 0; 0

� �
. (16)

These modes of vibration are also admissible in a simply supported rectangular plate made of a compressible
material and were missed by Batra and Aimmanee [4], Srinivas et al. [1], and various other previous
investigators. Batra and Aimmanee [4]’s solution corresponds to a ¼ 0 in Eqs. (15) and (16).

For given values of m and n, the first mode of vibration with u3a0 is called the flexural mode and the
remaining infinitely many modes are termed the thickness modes of vibration. Flexural modes of vibration are
usually predominant in a thin plate but thickness modes of vibration may have lower frequencies than the
flexural modes for a thick plate.

Given the plate thickness h, for each combination of values of m and n, the transcendental Eq. (11) can be
solved numerically for f and hence o by using the Newton–Raphson method. Eq. (11) has infinitely many
roots; for each root the corresponding mode shape is given by Eq. (7). Thus for each combination of m and n

there are infinitely many thickness modes of vibration.
4. Results

We assume that the plate is made of a rubberlike material. Material properties of rubber, taken from the
website www.efunda.com, are E ¼ 1 MPa; r ¼ 1000 kg/m3; n ¼ 0:5; where E is Young’s modulus and n
Poisson’s ratio. For a square plate and ðm; nÞ ¼ ð1; 0Þ; ð1; 1Þ; ð2; 0Þ, and ð2; 1Þ, Table 1 contains a list of the first
Table 2

First 10 natural frequencies of a simply supported square plate made of an incompressible material computed from the analytical solution

h=Lx ¼ 1=4 h=Lx ¼ 1=8

Number ðm; nÞ Mode O Frequency Number ðm; nÞ Mode O Frequency

1 (1,1) o 0.577 1 (1,1) o 0.167

2 (1,0), (0,1) i 0.785 2 (2,1), (1,2) o 0.386

3 (1,1) i 1.111 3 (1,0), (0,1) i 0.393

4 (2,1), (1,2) o 1.186 4 (1,1) i 0.555

5 (2,0), (0,2) i 1.571 5 (2,2) o 0.577

6 (2,2) o 1.656 6 (3,1), (1,3) o 0.694

7 (2,1), (1,2) i 1.756 7 (2,0), (0,2) i 0.785

8 (3,1), (1,3) o 1.925 8 (3,2), (2,3) o 0.855

9 (1,1) i 2.111 9 (2,1), (1,2) i 0.878

10 (2,2) i 2.221 10 (1,1) i 1.097

h=Lx ¼ 1=12 h=Lx ¼ 1=20

Number ðm; nÞ Mode O Frequency Number ðm; nÞ Mode O Frequency

1 (1,1) o 0.077 1 (1,1) o 0.028

2 (2,1), (1,2) o 0.184 2 (2,1), (1,2) o 0.069

3 (1,0), (0,1) i 0.262 3 (2,2) o 0.109

4 (2,2) o 0.284 4 (3,1), (1,3) o 0.135

5 (3,1), (1,3) o 0.347 5 (1,0), (0,1) i 0.157

6 (1,1) i 0.37 6 (3,2), (2,3) o 0.173

7 (3,2), (2,3) o 0.437 7 (1,1) i 0.222

8 (2,0), (0,2) i 0.524 8 (4,1), (1,4) o 0.223

9 (4,1), (1,4) o 0.55 9 (3,3) o 0.234

10 (3,3) o 0.577 10 (4,2), (2,4) o 0.258

http://www.efunda.com
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three non-dimensional natural frequencies O, defined by O ¼ oh
ffiffiffiffiffiffiffiffi
r=m

p
and constants C1;C2; . . . ;C6 that

determine the corresponding thickness mode shapes. The notations ‘‘o’’ and ‘‘i’’ represent, respectively, the
out-of-plane modes with u3ðx1;x2;x3 ¼ h=2Þa0 for some x1 and x2, and the in-plane modes with
u3ðx1;x2;x3 ¼ h=2Þ ¼ 0 for every x1 and x2. Note that for O ¼ 2:111 and 3:099 corresponding to ðm; nÞ ¼
ð1; 1Þ and ð2; 1Þ, respectively, constants C3 and C4 in Table 1 are complex. However, displacement and pressure
amplitudes computed from Eq. (7) are real as illustrated in plots included in Fig. 1.

For ðm; nÞ ¼ ð1; 0Þ and ð1; 1Þ, Fig. 1a–d exhibit through-the-thickness variation of Umn
1 ;Umn

2 ;Umn
3 and Pmn,

which have been normalized by their corresponding values on plate’s bottom surface. Note that some through-
the-thickness variations for the considered mode shapes are not displayed in the Figure because their values on
the plate’s bottom surface equal zero. For example, in Fig. 1c there is no through-the-thickness variation of
the normalized U10

3 . It is clear from the plot of U11
3 ðzÞ in Fig. 1c that plate theories that assume uniform lateral

displacement or deflection through the plate thickness will not capture this thickness mode of vibration. From
Fig. 1a, we see that U11

3 for O ¼ 2:111 varies almost linearly through the plate thickness, but that for
O ¼ 0:577 has a parabolic variation. For O ¼ 0:577, U11

1 and U11
2 variations are close to a polynomial of

degree one in z; thus the first-order shear deformation theory can approximately capture this mode
of vibration. On the other hand, this is not the case for O ¼ 2:111, for which through-the-thickness variations
of U11

1 and U11
2 are not first-order polynomials in z. The through-the-thickness variation of P11 corresponding

to O ¼ 0:577 is linear but it is parabolic for O ¼ 2:111. For mode shapes associated with
fC1;C2; . . . ;C6g ¼ f0; 0; 0; 0; 0:707; 0:707g, Pmn � 0 for all values of m and n. We note that the boundary
condition of null normal traction on the top and the bottom surfaces of the plate requires that p ¼ mu3;3 there.
Thus P11 need not always vanish on these surfaces as u3;3a0 on the top and the bottom surfaces of the plate
(see Fig. 1c). Of course, u3;3 can vanish on the top and the bottom surfaces of the plate without being
identically zero through the plate thickness. The nonlinear variations of Umn

1 ;Umn
2 and Umn

3 through the plate
thickness suggest that a higher-order plate theory such as that proposed by Batra and Vidoli [10] is needed to
Table 3

First 10 natural frequencies of a simply supported rectangular plate ðLx ¼ 2LyÞ computed from the analytical solution

h=Lx ¼ 1=4 h=Lx ¼ 1=8

Number ðm; nÞ Mode O Frequency Number ðm; nÞ Mode O Frequency

1 (1,0) i 0.785 1 (1,1) o 0.385

2 (1,1) o 1.186 2 (1,0) i 0.393

3 (0,1) i 1.571 3 (2,1) o 0.577

4 (2,0) i 1.571 4 (0,1) i 0.785

5 (2,1) o 1.656 5 (2,0) i 0.785

6 (1,1) i 1.756 6 (3,1) o 0.855

7 (2,1) i 2.221 7 (1,1) i 0.878

8 (3,1) o 2.283 8 (1,2) o 1.051

9 (3,0) i 2.356 9 (2,1) i 1.111

10 (1,2) o 2.702 10 (3,0) i 1.178

h=Lx ¼ 1=12 h=Lx ¼ 1=20

Number ðm; nÞ Mode O Frequency Number ðm; nÞ Mode O Frequency

1 (1,1) o 0.184 1 (1,1) o 0.069

2 (1,0) i 0.262 2 (2,1) o 0.109

3 (2,1) o 0.284 3 (1,0) i 0.157

4 (3,1) o 0.437 4 (3,1) o 0.173

5 (0,1) i 0.524 5 (1,2) o 0.223

6 (2,0) i 0.524 6 (2,2) o 0.258

7 (1,2) o 0.55 7 (4,1) o 0.258

8 (1,1) i 0.585 8 (0,1) i 0.314

9 (2,2) o 0.63 9 (2,0) i 0.314

10 (4,1) o 0.63 10 (3,2) o 0.316
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capture all modes of vibration. The minimum order of the plate theory needed to find all frequencies depends
upon the aspect ratio of the plate, and boundary conditions at the edges. The compatible higher-order plate
theory proposed in [10] employs a mixed variational principle [11].

In Table 2 are given the first ten analytical natural frequencies, for a simply supported square plate made of
a homogeneous and isotropic rubberlike material. The plate is usually called thin when h=Lxo0:1. It is clear
that, among the first ten modes of vibration, a thick plate ðh=Lx ¼ 1=4Þ has several in-plane modes of
vibration and their number decreases with a decrease in the plate thickness.

For different values of h=Lx, we have given in Table 3 the first ten analytical natural frequencies of a simply
supported rectangular plate having Lx ¼ 2Ly. As for a square plate the number of out-of-plane modes
increases with a decrease in the value of h=Lx. Whereas only pure distortional modes of vibration are
admissible in a plate made of an incompressible material, there is no restriction on the modes of vibration that
may occur in a plate made of a compressible material.

We note that by following a procedure similar to that outlined here, one can solve analytically equations
corresponding to free vibrations of a plate made of an incompressible anisotropic material, and incompressible
piezoelectric material, and hybrid plates with one or more layers made of an incompressible material.
Constitutive relations for incompressible linear elastic anisotropic materials may be found in Ref. [12].

5. Conclusions

An analytical solution for free vibration of a simply supported rectangular plate made of an incompressible
homogeneous linear elastic isotropic material has been obtained. Some frequencies missing in previous
analytical solutions for plates made of compressible materials have been identified.
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