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Abstract

Vibrations of a fixed–fixed narrow microbeam electrostatically actuated by applying a voltage difference to it and a

parallel rigid conductor are analyzed. For gaps between the two conductors that are comparable to the beam’s thickness,

the fundamental frequency of the beam may first increase with increasing applied voltage, before suddenly dropping at the

pull-in voltage. Available models fail to accurately describe this behavior of the frequency versus voltage diagram for

narrow microbeams, that results from a combination of strain-hardening and electrostatic softening effects. A distributed

electromechanical model, that accounts for electrostatic fringing fields, finite deflections and residual stresses, is proposed.

A recent estimate of the electrostatic force incorporating fringing fields due to both finite width and finite thickness of the

microbeam is employed. The lowest frequency is extracted with a simple and computationally efficient one degree-of-

freedom model obtained by approximating the deflection field with the static deflection of a fixed–fixed microbeam loaded

by a uniformly distributed force. The model’s predictions are in good agreement with those from three-dimensional finite-

element simulations.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Electrostatically actuated microbeams are extensively used as microelectromechanical systems (MEMS)
and resonant sensors in different applications such as signal filtering, and chemical and mass sensing; see
Refs. [1–9]. An electrostatically actuated microbeam is an elastic beam suspended above a stationary rigid
plate. Both bodies are made of electrically conductive materials, and a dielectric medium fills the gap between
them. For a resonant sensor, a direct current (D.C.) voltage applied across the microbeam and the rigid plate
deflects the microbeam and an alternating current (A.C.) harmonic voltage applied across the two conductors
forces the microbeam to vibrate. For A.C. voltage amplitudes much smaller than the D.C. voltage the
microbeam resonance frequencies are controlled by the D.C. voltage. Zook et al. [10] observed experimentally
that increasing the driving A.C. voltage enhances the resonance frequency (hardening effect). In Refs. [2,5,8]
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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the model developed in Ref. [1] is used for analyzing nonlinear oscillations due to moderately large applied
A.C. voltages.

The applied D.C. voltage has an upper limit beyond which the electrostatic force is not balanced by the
elastic restoring force in the deformable beam, the beam spontaneously deflects towards the stationary rigid
plate, and the device collapses. This instability, known as the pull-in instability, was simultaneously observed
experimentally by Taylor [11] and Nathanson et al. [12]. The accurate characterization of the pull-in instability
represents a focal point of research in the MEMS community, see Ref. [13].

A comprehensive review of different models of electrostatically actuated microbeams and their predictions
is given in Refs. [14,27]. In Ref. [4], vibrations of a wide clamped–clamped microbeam are studied using the
classical linear beam theory and discarding all fringing field effects. Experimental results are in good
agreement with theoretical findings for moderately small deflections. In Ref. [1], the microbeam model is
improved by considering mid-plane stretching; this gives good values of the fundamental frequency for applied
voltages close to that for the pull-in instability. The effect of increasing the gap between the microbeam and
the parallel rigid plate is considered, and it is shown that for considerably large gaps the fundamental
frequency may increase with increasing voltages before reaching the pull-in instability. In Ref. [7], the
nonlinear mechanical model of Ref. [1] is further improved by considering effects of fringing fields due to
beam’s finite width according to Palmer’s formula [15]. The fringing field correction seems to be first
considered in the MEMS literature in Ref. [16], where the model of Ref. [4] was supplemented with Palmer’s
formula for extracting the pull-in parameters. However, as noticed in Ref. [17], and also observed in Ref. [18],
none of these works is applicable to narrow microbeams where fringing field effects due to the finite thickness
are not negligible.

Numerical extraction of pull-in parameters and frequencies of vibration require the solution of stiff
nonlinear ordinary differential equations. Several techniques have been proposed in the literature for finding
accurate numerical solutions, for example the shooting method [1], the differential quadrature method [7], the
finite element method [18], the meshless local Petrov–Galerkin method [18], the Rayleigh–Ritz method [4], the
Galerkin method using microbeam’s mode shapes and perturbation techniques [19] or the static microbeam’s
deflections under appropriate loads [18].

Here, we study vibrations of narrow microbeams predeformed by an electric field with the
electromechanical model of Ref. [18] that estimates the electrostatic fringing field due to both the finite
width and the finite thickness of the microbeam. In Ref. [18], it is shown that for relatively narrow
microbeams, the work presented in Ref. [1] considerably overestimates the pull-in voltage and underestimates
the pull-in maximum displacement, while the version proposed in Ref. [7] overestimates both the pull-in
voltage and the pull-in maximum deflection. We show here similar differences in microbeam’s fundamental
frequency. In particular, we show that the model of Ref. [1], by underestimating microbeam’s displacements,
underestimates the mechanical nonlinear hardening and consequently underestimates microbeam’s funda-
mental frequency. In addition, we show that its modified version [7], by overestimating microbeam’s
displacements, overestimates the nonlinear mechanical hardening and therefore microbeam’s fundamental
frequency. We show that the model proposed in Ref. [18] overcomes these shortcomings and is suitable for
accurately predicting the vibrational response of the microbeam. We perform a three-dimensional (3-D) finite
element simulation for verifying our results and show quantitative discrepancies among predictions from
models of Refs. [1,7,16] with the finite element findings, and the relevant qualitative differences may appear in
the frequency versus voltage diagram. Numerical results are obtained by using the one degree-of-freedom
model proposed in Ref. [18], and based on approximating microbeam’s deflection with the static deflection
under a uniformly distributed load. The present reduced order one degree-of-freedom model differs from the
classical mass-spring system of Ref. [12], since we account for the axial stress, nonlinear stiffening, charge
redistribution, and fringing fields. It also differs from that of Ref. [19] since we retain the complete nonlinear
behavior of the electrostatic force and consider fringing fields, and it differs from that of Ref. [17] since
we simultaneously treat the pull-in voltage and the pull-in deflection as unknowns, i.e., the pull-in deflection is
not empirically chosen as was done in Ref. [17]. The one degree-of-freedom model is validated by showing
that its predictions are in good agreement with those from the multimode analysis [1,9], with pull-in
parameters extracted by combining the Galerkin method with the displacement pull-in extraction (DIPIE) [20]
algorithm.
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The rest of the paper is organized as follows. In Sections 2 and 3 we describe, respectively, the
electromechanical model and the one degree-of-freedom models. In Section 4 we provide details of the 3-D
finite element simulations performed with the commercial code ANSYS. In Section 5 we compare our results
with those from other models in the literature and also with results of the 3-D finite element simulations. We
further validate the one degree-of-freedom model by comparing its predictions with those of a multimode
analysis. Conclusions are summarized in Section 6.

2. Governing equations

We consider a clamped–clamped narrow microbeam of length ‘, width b, and thickness h, as depicted in
Fig. 1. The microbeam is suspended above an infinite ground plane with an initial gap g0. Both bodies are
perfect conductors and are separated by a dielectric medium of permittivity �0�r; where �0 is the vacuum
permittivity, and �r is the relative permittivity. A positive potential difference V between the two conductors
causes the microbeam to deflect.

2.1. Nonlinear equation for beam’s large deflections

We incorporate the von Kármán nonlinearity in the expression for the axial strain to account for large
deflections, large rotations and small strains of the narrow beam; see Ref. [21]. The deflection w (see Fig. 1) in
the z-direction is governed by

Rbh €wþ EIwIV �NðwÞw00 ¼ F eðwÞ, (1)

where R is the mass density, E the Young’s modulus, I the moment of inertia of the cross-section about
the y-axis, N the axial force for a given deflection wðx; tÞ of the beam, F e the deflection-dependent electro-
static force per unit length, x the axial coordinate, and t the time. A superimposed dot means time derivative,
while a prime signifies spatial derivative with respect to the axial coordinate x. Effects of transverse
shear stresses are neglected since for a typical microbeam ‘=h420. A beam is considered narrow, when
its width b is less than five times its thickness h, see Ref. [16]. For a wide beam, the mechanical stiffness EI

should be modified as given in Ref. [16], where an effective Young’s modulus is considered. The axial force is
given by

NðwÞ ¼
Ebh

2‘

Z ‘

0

ðw0Þ2 dxþN0, (2)

where N0 is the initial axial load. For a narrow beam, N0 ¼ ~sA, where ~s ¼ s0ð1� nÞ, s0 is the initial uniform
biaxial stress in the material, and n is the Poisson’s ratio; see Ref. [16].

The beam deflection is subjected to the following four kinematic boundary conditions:

wð0; tÞ ¼ 0; w0ð0; tÞ ¼ 0; wð‘; tÞ ¼ 0; w0ð‘; tÞ ¼ 0. (3)

No initial conditions are needed for studying the free-vibration problem. Here we focus on analyzing
deformations of the beam in the xz plane.
Fig. 1. Sketch of the electrostatically actuated device.
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2.2. Electrostatic load

The distributed force, FeðwÞ, on the deformable microbeam due to the electric field depends on the potential
difference between the two conductors, the gap between them and on their geometries. Since only small strains
in the beam are considered, it is reasonable to assume that at every point x of the beam the electrostatic force
per unit length, Fe, depends only on the local deflection wðx; tÞ and equals the force per unit length acting on
an infinitely long straight beam separated by a distance gðx; tÞ ¼ g0 � wðx; tÞ from a ground plane as shown in
Fig. 1. The force Fe is computed by differentiating with respect to the gap g the energy per unit length stored in
the capacitor, that is

F e ¼ �
1

2
V2 qCg

qg
. (4)

Here Cg is the capacitance per unit length of the 2-D conductors’ system, and V is the voltage difference
between the two bodies. The capacitance Cg is comprised of the parallel-plate capacitance, and the fringing
field capacitance due to the finite width and the finite thickness of the beam.

It is shown in Ref. [18] that for narrow microbeams with 0:2ph=bp2 and 0:4ph=gp5 the capacitance Cg is
estimated within 2% error, with respect to a fully converged numerical solution, by

Cg

�0�r

¼
b

g
� 0:36þ 0:85

b

g

� �0:24

þ 2:5
h

g

� �0:24

. (5)

Substituting for Cg from Eq. (5) into Eq. (4) we obtain

Fe ¼
�0�r
2

bV 2

ðg0 � wÞ2
F, (6)

where the nondimensional fringing field correction factor F is given by

F ¼ 1þ 0:204
g0 � w

b

� �0:76
þ 0:6

h

b

g0 � w

h

� �0:76
. (7)

The parallel-plate approximation of the electrostatic force is characterized by F ¼ 1. The second term on the
right-hand side of Eq. (7) accounts for the finite width of the beam, and the third term for the finite thickness
of the beam. An improved estimate of the capacitance is given in Ref. [28].
3. One degree-of-freedom model

A closed-form solution of the vibration problem defined by Eqs. (1), (2), (6) and boundary conditions in
Eq. (3) cannot be found. Here we give an approximate solution based on a one degree-of-freedom model of the
MEMS. The approximate solution is constructed by expressing the deflection field wðx; tÞ as the product of an
unknown nondimensional time-dependent deflection parameter zðtÞ, and a trial function w̄ðxÞ satisfying the
kinematic boundary conditions in Eq. (3):

wðx; tÞ ¼ zðtÞw̄ðxÞ. (8)

The governing equation for zðtÞ is derived by multiplying both sides of Eq. (1) with w̄, integrating the resulting
equation over the beam span, and substituting into it the approximate solution given by Eq. (8):

Z ‘

0

Rbh€zw̄2 dxþ

Z ‘

0

EIzw̄IV w̄dx

�
Ebh

2‘

Z ‘

0

ðzw̄0Þ2 dxþN0

� �Z ‘

0

zw̄00w̄dx

¼

Z ‘

0

Feðzw̄Þw̄dx. ð9Þ
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After integrating by parts in the second and the third terms on the right-hand side of Eq. (9) and recalling that
w̄ satisfies the kinematic boundary conditions in Eq. (3), the governing equation for zðtÞ becomes

m€zþ ðk0 þ k1Þzþ k2z
3
¼ V2f eðzÞ, (10)

where

m ¼ Rbh

Z ‘

0

ðw̄ðxÞÞ2 dx, ð11aÞ

k0 ¼ EI

Z ‘

0

ðw̄00ðxÞÞ2 dx, ð11bÞ

k1 ¼ N0

Z ‘

0

ðw̄0ðxÞÞ2 dx, ð11cÞ

k2 ¼
Ebh

2‘

Z ‘

0

ðw̄0ðxÞÞ2 dx

� �2

, ð11dÞ

f eðzÞ ¼
1

V 2

Z ‘

0

Feðzw̄ðxÞÞw̄ðxÞdx. ð11eÞ

Note that F e is proportional to V 2, therefore f e is independent of V. The left-hand side of Eq. (10) is
comprised of the inertia force, m€z, and the restoring elastic force, ðk0 þ k1Þzþ k2z

3, of the system, while the
right-hand side represents the electrostatic force. Furthermore, ðk0 þ k1Þ represents the stiffness of a linear
elastic beam, and k2 the strain-stiffening effect. The lumped electrostatic force depends on the adopted
fringing field correction, and it cannot, in general, be expressed analytically.

The pull-in parameters are determined by discarding the inertia term in Eq. (10), and by requiring that the
pull-in deflection and the pull-in voltage satisfy simultaneously the resulting nonlinear equation and the
equation obtained by differentiating both sides of the resulting nonlinear equation with respect to z, i.e.,

ðk0 þ k1Þzþ k2z
3
¼ V2f eðzÞ, ð12aÞ

k0 þ k1 þ 3k2z
2
¼ V 2 df eðzÞ

dz
. ð12bÞ

The pull-in deflection parameter zPI is obtained by eliminating V2 from Eqs. (12), and by numerically solving
the resulting nonlinear algebraic equation in z. By substituting the so deduced value zPI into Eq. (12a), the
pull-in voltage VPI is determined.

The fundamental frequency of the deflected beam at a given voltage 0pV̄oVPI is found as follows. We set
V ¼ V̄ and €z ¼ 0 in Eq. (10), solve the resulting equation for z̄, set z ¼ z̄þ Dz in Eq. (10), retain terms linear in
Dz, and assume that Dz ¼ Dz0 expðiotÞ, where i ¼

ffiffiffiffiffiffiffi
�1
p

and o is the frequency. Therefore, for every D.C.
voltage V̄ the fundamental frequency, in rad=s, of the deflected beam is given by

oðV̄ Þ ¼
1

m
k0 þ k1 þ 3k2zðV̄ Þ

2
� V̄

2 df e

dz
ðzðV̄ ÞÞ

� �� �1=2

. (13)

The frequency oð0Þ is the fundamental frequency of the prestressed undeflected beam. When the voltage V̄

approaches the pull-in voltage VPI, the frequency oðV̄ Þ drops rapidly to zero; see Ref. [1]. For V̄ ¼ VPI it
follows from Eqs. (12b) and (13) that oðVPIÞ ¼ 0. This is analogous to the following situation: at the onset of
buckling of a prestressed beam, its fundamental frequency becomes zero.

As discussed in Ref. [1], the electrostatic force provides a softening effect on the overall mechanical stiffness,
while the membrane stretching introduces strain hardening. The resonance frequency oðV̄ Þ is determined by a
combination of these two opposite effects.

We choose

w̄ðxÞ ¼ 16
g0

‘4
x2ðx� ‘Þ2. (14)
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Thus the trial function w̄ðxÞ equals the static deflection of a fixed–fixed linear elastic microbeam resulting from
the uniformly distributed load 384EIg0=‘

4, chosen in such a way that w̄ð‘=2Þ ¼ g0. Consequently Eqs. (11)
become

m ¼
128

315
Rbhg2

0‘, ð15aÞ

k0 ¼
1024

5

EIg2
0

‘3
, ð15bÞ

k1 ¼
512

105

N0g2
0

‘
, ð15cÞ

k2 ¼
512

105

� �2
Ebhg4

0

2‘3
. ð15dÞ

The trial function given by Eq. (14) represents the actual deflection of the microbeam for small voltages. The
present choice of w̄ has been validated in Ref. [18], where the accuracy of the one degree-of-freedom model has
been established by showing that its pull-in parameters agree well with those obtained by solving the integro-
differential Eq. (1) with both the finite element, and the meshless local Petrov–Galerkin methods.

3.1. Comparison with the classical mass-spring system

The classical lumped one degree-of-freedom system equivalent to a microelectromechanical system is
comprised of a parallel-plate capacitor, where both plates are rigid. The upper plate has mass m and is
suspended by a linear spring of stiffness k, and the bottom plate is held fixed. The electrostatic force given by
the parallel-plate approximation acts on the movable electrode.

Neglecting effects of fringing fields, the initial stress, and the stiffening induced by geometric nonlinearities
is equivalent to setting in Eq. (10) k1 and k2 equal to zero and F ¼ 1. We thus get

m€zþ k0z ¼ V 2f eðzÞ, (16)

where

f eðzÞ ¼
�0�rb

2

Z ‘

0

w̄ðxÞ

ðg0 � zw̄ðxÞÞ2
dx. (17)

It follows from Eq. (13) that oðV̄ Þ equals zero when

k0 ¼ �0�rbV̄
2
Z ‘

0

w̄ðxÞ2

ðg0 � zw̄ðxÞÞ3
dx, (18)

which is equivalent to Eq. (12b) with k1 and k2 equal to zero and F ¼ 1.
Recalling that k0 given by Eq. (11b) depends upon w̄00, w̄ cannot be taken as a constant. Thus the present

one degree-of-freedom model differs from the classical lumped mass-spring system that gives kwPIk1 ¼ g0=3
and V 2

PI ¼ 8k=ð27�0�rAÞ, where A is the plate area.

4. Three dimensional finite-element analysis

Results from the one degree-of-freedom model presented in Section 3 are compared with those from
the 3-D finite element simulations performed with the commercial code ANSYS. Predictions from 3-D
simulations are considered more reliable since they do not involve a priori assumptions on the electrostatic
force and the kinematics of beam’s deformations. Details of simulating MEMS problems with ANSYS are
given in Ref. [22]. Following these guidelines we used the ROM144, a directly coupled electrostatic and
structural field tool utilizing a 2-D or 3-D reduced order model based on a modal representation of the
structural response. The ROM144 element has several modal degrees of freedom including modal
displacements, electrical potential, and nodal displacements. In Ref. [23], the finite element findings of
ROM144 tool have been found to agree well with experimental results. We modified the ‘‘Sample Miniature
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Table 1

Geometric and material parameters for the problems studied

Parameters Values

‘, ½mm� 25

b, ½mm� 0.25

h, ½mm� 0.5

g0, ½mm� 1

R, ½kg=m3� 2329

E, [GPa] 169

n 0.066

�r 1

Fig. 2. Schematics of the 3-D finite element mesh used for simulations of the clamped–clamped beam with the commercial code ANSYS.

The domain in light grey is the dielectric, and the one in dark grey is the microbeam.

R.C. Batra et al. / Journal of Sound and Vibration 309 (2008) 600–612606
Clamped–Clamped Beam Analysis’’, example 6.6 of the Section ‘‘Coupled-Field Analysis Guide’’ in Ref. [24],
adapting it to a narrow microbeam by extending the surrounding dielectric in order to accurately simulate
fringing fields. The material and geometric parameters of the narrow microbeam analyzed with ANSYS are
listed in Table 1. The finite element mesh is shown in Fig. 2. For the microbeam studied, ‘=h ¼ 50, h=g0 ¼ 0:5,
and h=b ¼ 2.

Deformations of only one-half of the system are analyzed due to symmetry conditions, and a fine mesh is
employed in the gap region. In particular, the dielectric medium is considered as a block of length 25mm, half-
width 6mm, and thickness 6mm. The elements SOLID 45 (8-node brick elements) are used to discretize the
microbeam, while SOLID 122 (20-node tetrahedral elements) are used to divide the dielectric region.
Geometric nonlinearities are included in the analysis. Here we retain the optimized mesh and the dielectric
region found in Ref. [18] for extracting the pull-in parameters, with the microbeam domain subdivided into 70,
2 and 2 elements in the axial, the width, and the thickness directions respectively.

The fundamental natural frequency of the system is obtained by first performing a static analysis to
determine the deformed shape of the clamped–clamped narrow microbeam under a given applied
voltage. Subsequently, harmonic analysis is performed by exciting the deflected/prestressed beam via a
small (the amplitude of the A.C. voltage equals �5% of the D.C. voltage) harmonic voltage, and
computing the amplitude of oscillations at the beam mid-span for excitation frequencies increased in
increments of 5 kHz.
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5. Results and comparisons

5.1. One degree-of-freedom model

The proposed electromechanical model for a narrow clamped–clamped microbeam has been validated by
computing results for a microbeam with material and geometric parameters listed in Table 1, and comparing
computed results with those obtained from 3-D finite element simulations performed with ANSYS; see
Section 4. For this geometry, both the effect of fringing fields due to the thickness of the microbeam (h=b ¼ 2),
and the effect of the membrane stretching correction due to large displacement of the microbeam (g0=h ¼ 2)
are relevant. Three different values of the initial stress s0, representative of pretensioned, stress-free and
precompressed beams, have been examined. The initial stress may be induced during the fabrication process.
We also present in Tables 3–6 results from models proposed in Refs. [1,7,16], and have summarized key
features of these works in Table 2. Results presented herein are our calculations with assumptions made in
Refs. [1,7,16].

As representative comparison parameters we choose the pull-in D.C. voltage VPI, the pull-in maximum
deflection kwPIk1 � zPIw̄ð‘=2Þ, the maximum frequency omax attained for V̄ spanning the interval ð0;VPIÞ,
and the voltage Vomax corresponding to omax.

It is clear from the results given in Table 3 that the fundamental frequency of the microbeam computed
from Eq. (13) with V̄ ¼ 0 agrees very well with that computed with ANSYS. Figs. 3–5 report the variation of
the fundamental frequency oðV̄ Þ normalized with respect to the fundamental frequency oð0Þ of the
undeflected microbeam, versus the applied voltage V in the range ð0;VPIÞ, normalized with respect to the pull-
in voltage VPI. Variables for each curve are normalized with respect to the corresponding parameters listed in
Tables 4–6. Values in Tables give quantitative differences among model predictions and finite element results.
Figs. 3–5 show qualitative differences among the results. In Fig. 4, omax=oð0Þ and Vomax=VPI for the
assumptions of Ref. [7] are depicted, where VPI is the corresponding pull-in voltage reported in Table 5.

Results presented in Tables 4–6 and Figs. 3–5 show that for a narrow microbeam undergoing relatively large
displacements, there are significant discrepancies between the pull-in parameters, and the maximum
frequencies computed with the models proposed in Refs. [1,7,16] and the 3-D finite element solution. When
completely discarding fringing field effects as proposed in Ref. [1], the electrostatic force is underestimated
resulting in an overestimation of the pull-in voltage and an underestimation of the pull-in displacement. As a
consequence the displacements predicted for a microbeam are smaller than the actual ones and the strain
Table 2

Key features of different electromechanical models

Model Membrane stretching Capacitance approximation

Ref. [1] Yes Parallel plate

Ref. [16] No Palmer’s

Ref. [7] Yes Palmer’s

Present work Yes Eq. (5)

Table 3

Comparison of the fundamental frequency of the microbeam with no voltage applied computed from Eq. (13) with that computed with

ANSYS

s0, [MPa] oð0Þ=2p [MHz]

ANSYS Eq. (13)

100 8.300 8.301

0 7.000 7.029

�100 5.300 5.468
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0 0.2 0.4 0.6 0.8 1

V VPI

0.2

0.4

0.6

0.8

1

V
0

1

2

3

4

Fig. 3. Variation of the fundamental frequency with applied D.C. voltage for s0 ¼ 100MPa computed with ANSYS (open circles), and

the electromechanical models of Ref. [1] (curve 1), Ref. [16] (curve 2), Ref. [7] (curve 3), and the present work (curve 4).

0 0.2 0.4 0.6 0.8 1
V VPI

0.4

0.6

0.8

1

V
0

1
2

3

4

V max VPI

max 0

Fig. 4. Variation of the fundamental frequency with applied D.C. voltage for s0 ¼ 0MPa computed with ANSYS (open circles), and the

electromechanical models of Ref. [1] (curve 1), Ref. [16] (curve 2), Ref. [7] (curve 3), and the present work (curve 4).
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hardening due to membrane stretching is underestimated. Therefore, the membrane stretching is incapable of
dominating the electrostatic softening for pretensioned microbeams as illustrated by results plotted in Fig. 3
where the frequency vs. voltage curve is monotonically decreasing. When fringing field effects due to the
microbeam finite width are also considered as has been done in Ref. [7], the pull-in voltage and the pull-in
maximum deflection are slightly overestimated, resulting in an overestimation of the strain hardening versus
the electrostatic softening. The maximum value of the fundamental frequency is therefore overestimated and
the frequency versus voltage curve shows a relevant overshoot with respect to the finite element solution. The
work included in Ref. [16] neglects the strain hardening effect and always gives monotonic behavior of the
frequency versus the voltage response. In addition, the neglect of the strain hardening effect underestimates
the microbeam stiffness and the pull-in parameters. The present electromechanical model based on the
fringing fields correction in Eq. (7) provides accurate quantitative predictions of the pull-in parameters and the
maximum frequency for narrow microbeams and reliably captures the qualitative behavior of the lowest
frequency versus the applied D.C. voltage.



ARTICLE IN PRESS

0 0.2 0.4 0.6 0.8 1

V VPI

0.4

0.6

0.8

1

1.2

1.4

V
0

1

2

3

4

Fig. 5. Variation of the fundamental frequency with applied D.C. voltage for s0 ¼ �100MPa computed with ANSYS (open circles), and

the electromechanical models of Ref. [1] (curve 1), Ref. [16] (curve 2), Ref. [7] (curve 3), and the present work (curve 4).

Table 4

For s0 ¼ 100MPa, comparison of representative parameters found using different electromechanical models and 3-D finite element

simulations

ANSYS One degree-of-freedom model

Ref. [1] Ref. [16] Ref. [7] Present work

kwPIk1, ½mm� 0.618 0.532 0.491 0.637 0.621

VPI, [V] 226 378 196 251 236

omax=2p, [MHz] 8.300 8.301 8.301 8.556 8.301

Vomax , [V] 0 0 0 219 0

Table 5

For s0 ¼ 0MPa, comparison of representative parameters found using different electromechanical models and 3-D finite element

simulations

ANSYS One degree-of-freedom model

Ref. [1] Ref. [16] Ref. [7] Present work

kwPIk1 , ½mm� 0.642 0.560 0.491 0.658 0.644

VPI, [V] 208 343 166 231 217

omax=2p, [MHz] 7.680 7.029 7.029 8.243 7.899

Vomax , [V] 181 0 0 204 194

Table 6

For s0 ¼ �100MPa, comparison of representative parameters found using different electromechanical models and 3-D finite element

simulations

ANSYS One degree-of-freedom model

Ref. [1] Ref. [16] Ref. [7] Present work

kwPIk1, ½mm� 0.660 0.597 0.491 0.683 0.671

VPI, [V] 188 306 129 210 197

omax=2p, [MHz] 7.560 6.587 5.468 8.138 7.810

Vomax , [V] 163 275 0 186 176
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From the analysis of the data reported in Figs. 3–5, we conclude that the pretension in the microbeam
reduces effects of the D.C. voltage on the lowest frequency before the pull-in instability occurs, while the
precompression enhances the nonmonotonic behavior of the lowest frequency versus the D.C. voltage.

We note that the pull-in voltage of �230V found for the microbeam studied herein is less than the
breakdown voltage of �520V for a silicon-to-silicon configuration analyzed by Ono et al. [25].

5.2. Validation of the one degree-of-freedom model

An approximate solution of the problem defined by Eqs. (1), (2), (6) and boundary conditions in Eq. (3) by
the multimode analysis [1,9] is found by expressing the displacement field wðx; tÞ as

wðx; tÞ ¼ wðxÞfðtÞ, (19)

where w is a row N-vector containing the eigenfunctions of the fixed–fixed beam (see Ref. [26]), and f is the
column N-vector of unknowns (modal amplitudes). Substituting from Eq. (19) into Eq. (1), premultiplying
both sides by wT and integrating over the beam span yieldsZ ‘

0

RbhwTw€fdxþ

Z ‘

0

EIwTwIV fdx

�
Ebh

2‘

Z ‘

0

fTðw0ÞTw0fdxþN0

� �Z ‘

0

wTw00f dx

¼

Z ‘

0

FeðwfÞwT dx. ð20Þ

After integrating by parts and exploiting the fact that the eigenfunctions satisfy the kinematic boundary
conditions in Eq. (3) we obtain the following set of nonlinear coupled ordinary differential equations:

m€fþ kðfÞf ¼ V 2feðfÞ, (21)

where

m ¼

Z ‘

0

RbhwTwdx, (22a)

kðfÞ ¼

Z ‘

0

ðEIðw00ÞTw00 þN0ðw
0
Þ
Tw0Þdxþ

Ebh

2‘

Z ‘

0

fTðw0ÞTw0fdx

� �Z ‘

0

ðw0ÞTw0 dx, (22b)

feðfÞ ¼
1

V 2

Z ‘

0

FeðwfÞwT dx. (22c)

Eqs. (21) are coupled because the stiffness matrix kðfÞ is nondiagonal, and its components and the components
of the electrostatic load vector feðfÞ are nonlinear functions of f.

The pull-in parameters are extracted by discarding the inertia term in Eq. (21) and by solving the resulting
system of equations with the displacement iteration pull-in extraction (DIPIE) algorithm [20]. The
displacement wð‘=2Þ at the beam’s mid-span is chosen as the driving parameter (see Ref. [20]). The pull-in
Table 7

Pull-in parameters from multi-mode analysis of the present set of electromechanical equations with increasing number of modes, N

N s0 ¼ 100MPa s0 ¼ 0MPa s0 ¼ �100MPa

kwPIk1, ½mm� VPI, [V] kwPIk1, ½mm� VPI, [V] kwPIk1, ½mm� VPI, [V]

1 0.62 238 0.65 218 0.67 198

3 0.62 237 0.64 217 0.67 197

5 0.62 236 0.64 217 0.67 196
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parameters computed with increasing number of modes for three values of the prestress are listed in Table 7. It
is clear that the consideration of only one mode in Eq. (19) gives sufficiently accurate values of the pull-in
voltage and the pull-in deflection. The little difference between values obtained with one, three and five modes
evinces that the participation of modes other than the first can be neglected. This validates the single degrees-
of-freedom model presented in Section 3. A comparison of values listed in Tables 4–6 with those given in
Table 7 shows good agreement between the pull-in parameters from the one degree-of-freedom model of
Section 3, and those computed with the multimode analysis combined with the DIPIE algorithm. Thus the use
of either the first mode function or Eq. (14) giving the static deflection of a beam loaded with a uniformly
distributed force gives equally good results.

5.3. Remarks

The reduced order models for clamped rectangular, circular and elliptic plates and membranes
incorporating the effect of the Casimir force are given in Refs. [29–31].

6. Conclusions

We have studied vibrations of a narrow microbeam predeformed by the electric field due to a D.C. voltage
difference between the microbeam and the parallel rigid flat conductor. It is shown that the proposed
electromechanical model, based on improved estimates of the electrostatic fringing fields accurately predicts
the vibrational response of the microbeam. For relatively large gaps between the microbeam and the base rigid
conductor both the membrane stretching and the fringing field effects are important, and neglecting one of
them may result in improper estimates of both the pull-in parameters and the resonance frequencies. The
combination of strain hardening introduced by the membrane stretching and of the electrostatic softening
strongly affect the microbeam resonance frequencies. A proper estimate of fringing fields is essential for
accurately predicting frequencies of the deflected narrow microbeam.
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