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a b s t r a c t

An analytical solution for free vibrations of a hybrid rectangular plate composed of
a transversely isotropic, homogeneous and linear elastic core and face sheets made of
a linear piezoelectric material is derived by assuming that the plate deformations are
governed by the Mindlin plate theory. The electric potential in a piezoelectric layer

on its major surfaces. For the hybrid plate coupled governing equations obtained from the
Hamilton principle are decoupled by introducing four auxiliary scalar functions, and the
Levy type analytical solution for free vibrations is derived. Plate frequencies as a function
of the piezoelectric layer thickness and the plate aspect ratio are presented and discussed.
It is found that the electric boundary conditions on major surfaces of the piezoelectric
layers and the aspect ratio of the hybrid plate noticeably influence its frequencies.
Significant contributions of the work include proposing the four scalar functions to
uncouple the governing equations, providing an analytical solution for frequencies of the
hybrid plate, and delineating effects of boundary conditions as well as of aspect ratio of
the plate.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Piezoelectric materials have wide ranging applications. Their electromechanical coupling characteristics, which lead to
mechanical deformations under an electric field and electrical polarization under mechanical loads, make them suitable for
a variety of electromechanical devices used for data collection [1], cooling systems [2], vibration and noise suppression [3],
energy harvesting [4], and telecommunication and sensor networks [5].

Static and dynamic deformations of a single-layer piezoelectric plate have been analyzed by Tiersten [6]. Wang and Yang
[7] have reviewed the development of higher order theories for dynamic analysis of piezoelectric plates and classified them
according to the variation in the thickness direction of displacements and the electric potential. Batra and Vidoli [8] have
proposed a Kth order shear and normal deformable theory for piezoelectric plates in which both the electric potential and
the three components of the mechanical displacement are expressed in terms of Legendre polynomials up to order K in the
thickness coordinate. The governing equations have been derived by using a mixed variational principle and exactly satisfy
electromechanical boundary conditions on the top and the bottom surfaces of the plate. Shiyekar and Kant [45] have used
a higher-order shear and normal deformable plate theory to analyze deformations of a hybrid functionally graded laminate
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with piezoelectric layers. Analytical results for free vibrations of piezoelectric plates are derived in Ref. [46], and the
literature on smart structures has been reviewed by Chopra [47].

Numerous studies have been carried out on free vibrations of piezoelectric coupled laminated plates. Tzou and Tseng [9]
proposed an integrated distributed piezoelectric sensor/actuator design for a large distributed system (shells and plates) and
studied its dynamic characteristics. Heyliger et al. [10,24,25,35,36] have studied vibration problems for linear piezoelectric
and linear magneto-electro-elastic laminates. Kapuria et al. [37,38] and Edery-Azulay and Abramovich [43] have proposed
an extended Kantorvich method for analyzing vibrations of piezoelectric laminates and finding inter-laminar stresses.
An exact three-dimensional (3D) analysis of simply supported piezoelectric coupled laminated plate was presented by Batra
et al. [11] in which thin piezoelectric layers are modeled as membranes. Vel and Batra [39] have studied 3D free vibrations of
hybrid piezoelectric laminates, and Yang and Batra [48] of thermo-piezoelectric plates. Reddy [12] derived equations for
laminated composite plates with integrated sensors and actuators based on the classical and shear deformation plate
theories. Vel et al. [13] extended the Stroh formalism to obtain an analytical solution for the steady state cylindrical bending
vibration of a composite plate with either surface mounted or embedded piezoelectric patches. The cylindrical bending
vibrations of a simply supported laminate with an embedded piezoelectric shear actuator have been investigated by
Baillargeon and Vel [14]. Using the finite layer method, Akhras and Li [15] studied 3D deformations of simply supported
rectangular plates.

Topdar et al. [16] employed the finite element method (FEM) to study free vibrations of a piezoelectric coupled laminated
plate under various boundary conditions. Batra and Liang [40], and Batra and Geng [41] employed the FEM to delineate 3-D
free and forced vibrations of hybrid piezoelectric laminates undergoing large or finite deformations.

The vibration analysis of simply supported hybrid piezoelectric laminated plates using the classical plate theory (CPT)
and the first order shear deformation theory (FSDT or the Mindlin plate theory) was conducted by Pietrzakowski [17]. Free
vibrations of simply supported orthotropic cross-ply laminates with piezoelectric layers bonded to the top and the bottom
surfaces have been studied by Torres and Mendonça [18], and Jin and Batra [19]. Whereas Torres and Mendonça assumed
mechanical displacements based on a higher order shear deformation theory, Jin and Batra used the FSDT; in both studies
the electric potential had layer wise discretization in the thickness direction.

For a simply supported laminated plate with embedded piezoelectric layers, Liang and Batra [20] investigated effects of
thickness, mass density and stiffness of the piezoelectric layer on plate's natural frequencies. The effect of electrical
boundary conditions on major surfaces of piezoelectric layers was studied by Davis and Lesieutre [21]. Jin and Batra [19], and
Wu et al. [22] have shown that natural frequencies for the closed circuit and the open circuit conditions are quite different.
Kapuria et al. [42] have recently reviewed the literature on piezoelectric composite laminates. Benjeddou [44] has provided
new insights into vibrations of piezoelectric beams.

Many studies on free vibrations of hybrid plates having layers made of piezoelectric and non-piezoelectric materials are
based on the CPT [17,22]. As shown in [23] the CPT does not fully capture effects of the piezoelectric layer thickness on
natural frequencies of the coupled structure. Works using either the FSDT or a higher-order plate theory have numerically
analyzed frequencies of hybrid plates. Here we present an analytical solution for free vibrations of a transversely isotropic
plate with two identical (i.e., the same thickness and the same material) piezoelectric layers bonded to its top and the
bottom surfaces. Two opposite edges of the plate are assumed to be simply supported but the other two edges can have
different boundary conditions. Similarly, the electric potential is taken to vanish at two opposite edges and the other two
edges can have either vanishing electric potential or overall null electric displacement. Equations governing free vibrations
of the plate are decoupled by introducing four auxiliary functions. The Levy type solution that identically satisfies boundary
conditions on simply supported edges is used to derive differential equations and boundary conditions for the four auxiliary
functions. Numerical results for natural frequencies of the hybrid plate are presented, and changes in frequencies of the core
plate due to the addition of piezoelectric layers are identified. Furthermore, effects of open circuit versus closed circuit
boundary conditions on major surfaces of the two piezoelectric layers are delineated.

Significant contributions of the work include using the FSDT theory for the hybrid plate and quadratic variation of the
electric potential through the piezoelectric layer thickness, introducing four scalar functions to decouple the governing
equations, analytically solving these equations, and delineating effects of closed and open circuit electric boundary
conditions on the hybrid plate frequencies.
2. Problem formulation

A schematic sketch of the problem studied is depicted in Fig. 1. The plate has length a, width b, core thickness 2h and
thickness of each piezoelectric layer hp with the mid-surface of the hybrid plate lying in the xy-plane. The piezoelectric and
the core materials are assumed to be homogeneous and transversely isotropic with the z-axis as the axis of transverse
isotropy, and obey linear relations for both mechanical and electromechanical deformations.

For the FSDT, we assume the following displacement field:

uxðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zψxðx; y; tÞ (1a)

uyðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zψyðx; y; tÞ (1b)



Fig. 1. Schematic sketch of the hybrid rectangular plate studied.
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uzðx; y; z; tÞ ¼wðx; y; tÞ (1c)

in which, u0, v0, and w are displacements along the x-, the y-, and the z-axis, respectively, of a point on the mid-surface, and
ψx and ψy represent rotations about the y- and the x-axis, respectively. The assumed displacement field (1) gives continuous
displacements across interfaces between the piezoelectric layers and the core plate.

In rectangular Cartesian coordinates, the strain–displacement relation for infinitesimal deformations is

εg ¼ 1
2ð∇uþ ð∇uÞT Þ

n
(2)

where ∇ is the gradient operator. The linear constitutive relations for the elastic core and the piezoelectric layers are taken
to be

frg ¼ ½C�fεg (3)

frg ¼ ½C′�fεg−½e�T fEg; fDg ¼ ½e�fεg þ ½Ξ�fEg (4)

where {E} and {D} are the electric field and the electrical displacement in the piezoelectric layer, respectively, [C] and ½C′�
are, respectively, matrices of elastic constants for the core and the piezoelectric layer, ½Ξ� is the matrix of dielectric
permittivity, and ½e� is the electromechanical coupling matrix. These matrices, modified by solving the equation szz¼0 for εzz
and substituting for εzz in Eqs. (3) and (4), are given as relations (A.1) in Appendix A. The electric potential Φ is related to the
electric field by

E¼−∇Φ (5)

Using Hamilton's principle, we get the following equations of motion [26]:

Nxx;x þ Nxy;y ¼ I0 €u0; Nxy;x þ Nyy;y ¼ I0 €v0; Qx;x þ Qy;y ¼ I0 €w (6a)

Mxx;x þMxy;y−Qx ¼ I2 €ψx; Mxy;x þMyy;y−Qy ¼ I2 €ψy (6b)

In Eqs. (6a) and (6b) a superimposed dot denotes differentiation with respect to time t, and the in-plane resultant forces
ðNxx;Nxy;NyyÞ, resultant moments ðMxx;Mxy;MyyÞ, the resultant transverse forces ðQx;QyÞ, and the mass moments of inertia
ðI0; I2Þ are defined below:

ðNxx;Nxy;NyyÞ ¼
Z hþhp

−h−hp
ðsxx; sxy; syyÞdz; ðQx;QyÞ ¼

Z hþhp

−h−hp
ðsxz; syzÞdz

ðMxx;Mxy;MyyÞ ¼
Z hþhp

−h−hp
ðsxx; sxy; syyÞzdz; ðIo; I2Þ ¼

Z hþhp

−h−hp
ρð1; z2Þdz (7)

We neglect inertia effects for the electrical problem since time scales for it are much smaller than those for the
mechanical problem. The continuity of surface tractions at the interfaces between the piezoelectric layers and the core plate
has been tacitly assumed in deriving Eqs. (6). Analogous to Eqs. (6) for the mechanical equilibrium, we satisfy the Maxwell
equation in the following integral form:

Z hþhp

h
∇ � D dzþ

Z −h

−h−hp
∇ � D dz¼

Z hþhp

h
ðDx;x þ Dy;y þ Dz;zÞdzþ

Z −h

−h−hp
ðDx;x þ Dy;y þ Dz;zÞdz¼ 0 (8)

The top and the bottom surfaces of the hybrid laminate are traction free. We consider one of the following two electrical
boundary conditions on major surfaces of the piezoelectric layers.

Φðz¼ 7hÞ ¼ 0; Φðz¼ 7 ðhþ hpÞÞ ¼ 0; (9a)
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Φðz¼ 7hÞ ¼ 0; Dzðz¼ 7ðhþ hpÞÞ ¼ 0 (9b)

That is, in each case the interface between the piezoelectric layer and the core plate is at zero potential, and the
outermost surfaces of the piezoelectric layer are either held at zero potential or are electrically insulated. The edges x¼ 0
and x¼ a are assumed to be at zero potential, and on the other two edges y¼ −b=2 and y¼ b=2 either the electric potential
is prescribed to be zero or they are electrically insulated in which case the following boundary condition holds:

Z hþhp

h
Dy x; 7

b
2
; z; t

� �
dzþ

Z −h

−h−hp
Dy x; 7

b
2
; z; t

� �
dz¼ 0 (10)

We consider the following mechanical boundary conditions on edges y¼−b=2 and y¼ b=2:
(i)
 Clamped:

u0 ¼ v0 ¼w¼ ψx ¼ ψy ¼ 0 (11a)
(ii)
 Free:

Nxy ¼Nyy ¼ Qy ¼Mxy ¼Myy ¼ 0 (11b)
(iii)
 Simply supported:

Nxy ¼Nyy ¼w¼Mxy ¼Myy ¼ 0 (11c)
The other two edges, x¼ 0 and x¼ a, are assumed to be simply supported with boundary conditions analogous to
Eq. (11c) applied on them. Free, clamped and simply supported edges are denoted by F, C and S, respectively.

3. Analytical solution

3.1. Electric problem

When the two major surfaces of the piezoelectric layer are held at zero voltage (i.e., closed circuit or boundary conditions
(9a) prescribed on them), we assume the following quadratic variation of Φ in the transverse coordinate, z [27]:

Φðx; y; z; tÞ ¼
φðx; y; tÞ 1− z−h−hp=2

hp=2

� �2
� �

; h≤z≤hþ hp

φðx; y; tÞ 1− −z−h−hp=2
hp=2

� �2
� �

; −h−hp≤z≤−h

8>>><
>>>:

(12a)

However, when one surface is kept at zero voltage and the other is electrically insulated (i.e., open circuit or boundary
conditions (9b) prescribed on them), we postulate that

Φðx; y; z; tÞ ¼

ϕðx; y; tÞ 1− z−h−hp=2
hp=2

� �2
þ 4ðz−hÞ

hp

� �

þ e31
Ξ33

u;x þ v;y þ ðhþ hpÞðψx;x þ ψy;yÞ
� 	ðz−hÞ h≤z≤hþ hp

ϕðx; y; tÞ 1− −z−h−hp=2
hp=2

� �2
þ −4ðzþhÞ

hp

� �

þ e31
Ξ33

u;x þ v;y−ðhþ hpÞðψx;x þ ψy;yÞ
� 	ðzþ hÞ −h−hp≤z≤−h

8>>>>>>>>>><
>>>>>>>>>>:

(12b)

with expressions for e31 and Ξ33 given in Appendix A.
Substitution from Eq. (12) into Eq. (5) and the result into Eqs. (4) and (8) gives the following equation for the

determination of the function ϕ appearing in Eq. (12).

μ4ðw;xx þw;yyÞ−μ2ðψx;xxx þ ψx;xyy þ ψy;yxx þ ψy;yyyÞ−μ3ðϕ;xx þ ϕ;yyÞ þ μ5ðψx;x þ ψy;yÞ þ μ6ϕ¼ 0 (13)

Boundary conditions for ϕ are

ϕða; y; tÞ ¼ ϕð0; y; tÞ ¼ 0; and
either ϕ x; b2 ; t


 �¼ ϕ x;− b
2 ; t


 �¼ 0

or
R hþhp
h Dy x; 7 b

2 ; z; t

 �

dzþ R −h
−h−hp Dy x; 7 b

2 ; z; t

 �

dz¼ 0
(14)

Eq. (13) exhibits coupling between electrical and mechanical effects. For the open and the closed circuit conditions,
material moduli μ2; :::; μ6 listed in Appendix A have different values.
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3.2. Mechanical problem

Upon substitution of relations (1), (2), (3) and (4) into (7), resultant forces and resultant moments are expressed in terms
of the generalized displacements and the electric potential ϕ as

Nxx ¼ A′
11u0;x þ A′

12v0;y; Nyy ¼ A′
12u0;x þ A′

11v0;y; Nxy ¼ A′
66ðu0;y þ v0;xÞ (15a,b,c)

Mxx ¼D′
11ψx;x þ D′

12ψy;y þ μ1ϕ; Myy ¼D′
12ψx;x þ D′

11ψy;y þ μ1ϕ; Mxy ¼D′
66ðψx;y þ ψy;xÞ (15d,e,f)

Qx ¼ K2A′
55ðw;x þ ψxÞ−μ2ðψx;xx þ ψy;xyÞ−μ3ϕ;x (15g)

Qy ¼ K2A′
55ðw;y þ ψyÞ−μ2ðψx;xy þ ψy;yyÞ−μ3ϕ;y (15h)

where K2 is the shear correction factor which is assumed to be π2=12. Expressions for coefficients in relations (15a–h) are
given as Eq. (A.2) of Appendix A.

Substitution from relations (15) into Eqs. (6) gives following equations for the displacements:

A′
11u0;xx þ A′

12v0;xy þ A′
12ðu0;xx þ v0;xyÞ ¼ I0 €u0; A

′
12u0;xy þ A′

11v0;yy þ A′
66ðu0;xy þ v0;xxÞ ¼ I0 €v0 (16a,b)

D′
11ψx;xx þ D′

12ψy;xy þ D′
66ðψx;yy þ ψy;xyÞ þ μ2ðψx;xx þ ψy;xyÞ−K2A′

55ðw;x þ ψxÞ þ ðμ1 þ μ3Þϕ;x ¼ I2 €ψx (16c)

D′
12ψx;xy þ D′

11ψy;yy þ D′
66ðψx;xy þ ψy;xxÞ þ μ2ðψx;xy þ ψy;yyÞ−K2A′

55ðw;y þ ψyÞ þ ðμ1 þ μ3Þϕ;y ¼ I2 €ψy (16d)

K2A′
55ðw;xx þw;yy þ ψx;x þ ψy;yÞ−μ2ðψx;xxx þ ψx;xyy þ ψy;yxx þ ψy;yyyÞ−μ3ðϕ;xx þ ϕ;yyÞ ¼ I0 €w (16e)

Eqs. (16a) and (16b) govern stretching (u0 and v0) of the plate midsurface, Eqs. (16c)–(16e) its bending (w, ψx, ψy), and
there is no coupling between the two types of deformations. However, Eqs. (16a) and (16b) are coupled, and so are Eqs. (16c)–
(16e) and (13). We simplify these equations as follows.

We introduce four auxiliary functions φ1; φ2; φ3 and φ4 defined by

φ1

φ2

φ3

φ4

8>>>><
>>>>:

9>>>>=
>>>>;

¼

u0;x þ v0;y
u0;y−v0;x
ψx;x þ ψy;y

ψx;y−ψy;x

8>>>><
>>>>:

9>>>>=
>>>>;

(17)

and rewrite Eqs. (16) and (13) as

A′11φ1;x þ A′66φ2;y ¼ I0 €u0; A′11φ1;y−A′66φ2;x ¼ I0 €v0 (18a,b)

D′
11φ3;x þ D′

66φ4;y−K
2A′

55ðw;x þ ψxÞ þ μ2φ3;x þ ðμ1 þ μ3Þϕ;x ¼ I2 €ψx (18c)

D′
11φ3;y−D

′
66φ4;x−K

2A′
55ðw;y þ ψyÞ þ μ2φ3;y þ ðμ1 þ μ3Þϕ;y ¼ I2 €ψy (18d)

K2A′
55ð∇2wþ φ3Þ−μ2∇2φ3−μ3∇

2ϕ¼ I0 €w; μ4∇
2w−μ2∇

2φ3−μ3∇
2ϕþ μ5φ3 þ μ6ϕ¼ 0 (18e,f)

where ∇2is the 2D Laplace operator in the xy-plane. Differentiation of Eqs. (18a) and (18c) with respect to x and of Eqs. (18b)
and (18d) with respect to y, and adding Eq. (18a) to Eq. (18b) and Eq. (18c) to Eq. (18d) give

A′
11∇

2φ1 ¼ I0 €ϕ1; D
′
11∇

2φ3−K
2A′

55ð∇2wþ φ3Þ þ μ2∇
2φ3 þ ðμ1 þ μ3Þ∇2ϕ¼ I2 €φ3 (19a,b)

Differentiation of Eqs. (18a) and (18c) with respect to y and of Eqs. (18b) and (18d) with respect to x, and subtracting
Eq. (18a) from Eq. (18b) and Eq. (18c) from Eq. (18d) give

A′
66∇

2φ2 ¼ I0 €φ2; D′
66∇

2φ4−K
2A′

55φ4 ¼ I2 €φ4 (20a,b)

It can be seen that Eqs. (18a) through (18d) are replaced by four Eqs. (19) and (20). Whereas Eqs. (19a), (20a) and (20b)
are uncoupled, Eqs. (19b), (18e) and (18f) are coupled. These six equations are solved for the six unknown functions ϕ, φ1,
φ2, φ3, φ4 and w.

For harmonic motion the six unknowns ϕ, φ1, φ2, φ3, φ4 and w are assumed to have the following form:

wðx; y; tÞ ¼ ∑
∞

m ¼ 1
wmðx; yÞeiωmt ; ϕðx; y; tÞ ¼ ∑

∞

m ¼ 1
ϕmðx; yÞeiωmt

φ1ðx; y; tÞ ¼ ∑
∞

m ¼ 1
φ1mðx; yÞeiωmt ; φ2ðx; y; tÞ ¼ ∑

∞

m ¼ 1
φ2mðx; yÞeiωmt
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φ3ðx; y; tÞ ¼ ∑
∞

m ¼ 1
φ3mðx; yÞeiωmt ; φ4ðx; y; tÞ ¼ ∑

∞

m ¼ 1
φ4mðx; yÞeiωmt (21)

where ωm is a natural frequency of the plate.
Substituting from Eq. (21) into Eq. (18e,f) and (19b) and after algebraic manipulations we obtain the following three

uncoupled differential equations with constant coefficients:

λ1∇6wm þ λ2∇4wm þ λ3∇2wm þ λ4wm ¼ 0; φ3m ¼ λ′1∇
4wm þ λ′2∇

2wm þ λ′3wm; (22a,b)

ϕm ¼ λ″1∇
2wm þ λ″3wm þ λ″3φ3m (22c)

Coefficients λiði¼ 1; :::;4Þ and λ′k; λ
″
kðk¼ 1;2;3Þ with values depending upon hp and h are given as relations (A.3) in

Appendix A. They couple electrical and mechanical effects. Furthermore, substitution from Eq. (21) into Eqs. (19a) and (20)
yields

A′
11∇

2φ1m ¼ −I0ω2φ1m; A′
66∇

2φ2m ¼−I0ω2φ2m; D′
66∇

2φ4m−K
2A′

55φ4m ¼−I2ω2φ4m (23a,b,c)

Eqs. (22) and (23) are coupled because coefficients are functions of the frequency ω.
For a harmonic motion, displacements u0, v0, ψx and ψy are written as

u0ðx; y; tÞ ¼ ∑
∞

m ¼ 1
u0mðx; yÞ eiωmt ; v0ðx; y; tÞ ¼ ∑

∞

m ¼ 1
v0mðx; yÞ eiωmt

ψxðx; y; tÞ ¼ ∑
∞

m ¼ 1
ψxmðx; yÞ eiωmt ; ψyðx; y; tÞ ¼ ∑

∞

m ¼ 1
ψymðx; yÞ eiωmt (24)

Substituting from Eqs. (21) and (24) into Eqs. (18a)–(18d), we get

u0m ¼ −
1

I0ω2 ðA
′
11φ1m;x þ A′

66φ2m;yÞ; v0m ¼−
1

I0ω2 ðA
′
11φ1m;y−A

′
66φ2m;xÞ (25a,b)

ψxm ¼−
1

I2ω2 D′
11φ3m;x þ D′

66φ4m;y−K
2A′

55ðwm;x þ ψxmÞ þ μ2φ3m;x þ ðμ1 þ μ3Þϕm;x

h i
(25c)

ψym ¼ −
1

I2ω2 D′
11φ3m;y−D

′
66φ4m;x−K

2A′
55ðwm;y þ ψymÞ þ μ2φ3m;y þ ðμ1 þ μ3Þϕm;y

h i
(25d)

Thus generalized displacements and the electric potential can be found once we know ϕ, φ1, φ2, φ3, φ4 and w.

3.3. Analytical solution

Recalling that edges x¼ 0 and x¼ a are simply supported, we assume the following expressions for the transverse
displacement wm and functions φ1m; φ2m and φ4m:

wmðx; yÞ ¼ ∑
∞

j ¼ 1
wmjðyÞ sin ðβjxÞ; φ1mðx; yÞ ¼ ∑

∞

j ¼ 1
φ1mjðyÞ sin ðβjxÞ (26a,b)

φ2mðx; yÞ ¼ ∑
∞

j ¼ 1
φ2mjðyÞ cos ðβjxÞ; φ4mðx; yÞ ¼ ∑

∞

j ¼ 1
φ4mjðyÞ cos ðβjxÞ (26c,d)

where βj ¼ jπ=a. Substitution from Eqs. (26) into Eqs. (22a) and (23) results in four ordinary differential equations whose
solutions are [29]

wmjðyÞ ¼ C1sinhðη1yÞ þ C2coshðη1yÞ þ C3sinhðη2yÞ þ C4coshðη2yÞ þ C5sinhðη3yÞ þ C6coshðη3yÞ (27a)

φ1mjðyÞ ¼ C7sinhðη4yÞ þ C8coshðη4yÞ (27b)

φ2mjðyÞ ¼ C9sinhðη5yÞ þ C10coshðη5yÞ (27c)

φ4mjðyÞ ¼ C11sinhðη6yÞ þ C12coshðη6yÞ (27d)

in which Ckðk¼ 1; :::;12Þ are twelve unknown constants to be determined from twelve boundary conditions, six (5 listed in
Eq. (11) and 1 for ϕ) at each edge, y¼ 7b=2. Substitution from Eq. (27a) into Eq. (22a), we find that parameters
ηk ¼

ffiffiffiffiffi
εk

p ðk¼ 1;2;3Þ are roots of the following cubic equation:

λ1ε
3 þ ðλ2−3βj2λ1Þε2 þ ðλ3−2λ2βj2 þ 3λ1βj

4Þεþ ðλ4−λ3βj2 þ λ2βj
4−λ1βj6Þ ¼ 0 (28)

Values of parameters η4; η5 and η6 are obtained from relations (A.4) of Appendix A. Note that solutions (27) are valid for
real values of ηk. For imaginary values of ηk, sinh and cosh become sin and cos, respectively. After having found w we get φ3m

from Eq. (22b) and then ϕ from Eq. (22c). Eq (25) can now be used to ascertain the generalized displacements.
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By imposing electrical and mechanical boundary conditions on edges y¼−b=2 and y¼ b=2, a system of twelve
homogeneous linear algebraic equations is obtained. Setting the determinant of the coefficient matrix equal to zero, we
obtain an algebraic equation for the determination of natural frequencies of the hybrid plate.

4. Numerical results and discussion

Unless otherwise mentioned, numerical results for free vibrations of a hybrid rectangular plate with core made of Al2O3

and piezoelectric layers of PZT-4 are presented for various values of geometric parameters and different boundary
conditions on edges y¼ 7b=2. Values of material parameters are listed in Table 1. The notation SCSF for mechanical
boundary conditions implies that edges x¼ 0 and x¼ a are simply supported, and edges y¼ b=2 and y¼ −b=2 are clamped
Table 1
Values of material parameters.

Property Core plate Piezoelectric layer

Ti–6Al–4V Al2O3 G-1195 N PZT-4 PZT-6B BaTiO3

E ðGPaÞ 105.7 – 63.0 – – –

ν 0.2981 – 0.3 – – –

c11 ðGPaÞ – 460.2 – 132 168 150
c12 ðGPaÞ – 174.7 – 71 84.7 65.3
c33 ðGPaÞ – 509.5 – 115 163 146
c13 ðGPaÞ – 127.4 – 73 84.2 66.2
c55 ðGPaÞ – 126.9 – 26 35.5 43.9
e31ðcm−2Þ – – 44.37 −4.1 −0.9 −4.3
e33 ðcm−2Þ – – 50.18 14.1 7.1 17.5

e15 ðcm−2Þ – – 14.13 10.5 4.6 11.4

Ξ11 ðnF m−1Þ – – 15.30 7.124 3.60 9.87

Ξ33 ðnF m−1Þ – – 15.00 5.841 3.42 11.16

ρ ðkg m−3Þ 4429 4000 7600 7500 7550 5700

Fig. 2. Contour plots of the first three mode shapes for closed circuit piezoelectric coupled rectangular plate ðb=a¼ 1 ; 2h=a¼ 0:1; hp=2h¼ 0:1 Þ; the
legends below each figure are boundary conditions, frequency (Hz), and the corresponding mode shape in x- and y-directions.
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and free, respectively. Also, numbers in parenthesis following the value of the natural frequency equal the mode numbers
along the x and the y directions, respectively. Contour plots of the first three mode shapes are exhibited in Fig. 2 for a hybrid
piezoelectric rectangular plate under different mechanical boundary conditions.

4.1. Comparison of presently computed results with those in the literature

For a hybrid plate having an isotropic core, we have compared in Table 2 the presently computed resonant frequencies
with those reported by Leissa [31] and Hasani et al. [32] for the thickness ratio hp=2h decreasing from 0.1 to 0. It is clear that
as hp=2h goes to 0, the resonant frequency of the hybrid plate approaches that of the homogeneous plate. In Table 3 we have
compared the first five natural frequencies of a SSSS square plate (2h/a¼1/10 and 1/50) made of a transversely isotropic
material without piezoelectric layers with those reported in Ref. [28] based on the FSDT. It is clear that the presently
Table 2

Comparison of the non-dimensional natural frequency, ω¼ωa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ρð1−ν2Þ=Eð2hÞ2

q
, with that reported in Refs. [31,32] for different boundary conditions

(b=a¼ 1 ; 2h=a¼ 0:005).

hp
2h

Reference SSSS SSSC SSSF SCSC SCSF SFSF

10−1 Present 19.072 21.489 10.623 26.306 11.534 9.398

10−2 Present 19.607 23.287 11.505 28.508 12.491 9.485

10−4 Present 19.736 23.639 11.678 28.939 12.679 9.628

0 Present 19.738 23.643 11.680 28.944 12.681 9.630
0 Leissa [31] 19.74 23.65 11.680 28.95 12.69 9.63
0 Hasani et al. [32] 19.76 23.66 11.70 29.01 12.69 9.64

Table 3
Comparison of the non-dimensional natural frequency, ω¼ ða2=2hÞω

ffiffiffiffiffiffiffiffi
ρ=G

p
, with that reported in reference [28] (a=b¼ 1 ; 2h=a¼ 1=50 ; 1=10).

2h
a

Method Mode number

1st 2nd 3rd 4th 5th

1/50 Present 9.6016 23.8922 23.8922 38.0519 47.4202
Hosseini Hashemi et al.[28] 9.6016 23.8923 23.8923 38.0518 47.4200

1/10 Present 8.9605 20.4746 20.4746 30.3950 36.3614
Hosseini Hashemi et al.[28] 8.9605 20.4745 20.4745 30.3949 36.3613

Table 4
Comparison of the non-dimensional natural frequency, ω¼ 2hω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρð1þ νÞ=E

p
, with that reported in Ref. [33] (a=b¼ 2 ; 2h=a¼ 1=20 ; 1=12).

Method Mode number

(1,1) (2,1) (3,1) (4,1) (5,1)

a=b¼ 2; 2h=a¼ 1=20
Present 0.0589 0.0930 0.1481 0.2218 0.3114
Srinivas et al. [33] 0.0589 0.0931 0.1485 0.2226 0.3130

a=b¼ 2; 2h=a¼ 1=12
Present 0.1576 0.2444 0.3788 0.5497 –

Srinivas et al. [33] 0.1581 0.2455 0.3811 0.5544 –

Table 5
Comparison of the presently computed first ten natural frequencies (Hz) for an isotropic plate with those given in Ref. [30].

Method Mode number

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Present 145.35 363.05 363.05 580.35 725.00 725.00 941.64 941.64 1229.88 1229.88
He et al.[30] 144.25 359.00 359.00 564.10 717.80 717.80 908.25 908.255 1223.14 1223.14
Diff (%) 0.76 1.12 1.12 2.80 0.99 0.99 3.55 3.55 0.55 0.55



Table 6
The first three natural frequencies (Hz) for SSSS, SCSC, SFSF, SFSC, SSSC and SSSF hybrid plates with b=a¼ 1; 2 ; 2h=a¼ 0:05 ; 1 and open and closed
circuit conditions on major surfaces of the piezoelectric layers.

BCs. b
a

2h
a

hp
2h

Electrical condition Mode sequences

1st 2nd 3rd

SSSS 1 0.05 0.1 Closed 422.966 (1,1) 1038.436 (1,2) 1633.073 (2,2)
Open 429.818 (1,1) 1054.813 (1,2) 1658.196 (2,2)

0.2 Closed 405.858 (1,1) 992.919 (1,2) 1556.567 (2,2)
Open 418.993 (1,1) 1024.066 (1,2) 1604.047 (2,2)

0.1 0.1 Closed 816.534 (1,1) 1918.659 (1,2) 2910.463 (2,2)
Open 829.094 (1,1) 1945.644 (1,2) 2948.553 (2,2)

0.2 Closed 778.274 (1,1) 1810.841 (1,2) 2727.761 (2,2)
Open 802.005 (1,1) 1860.773 (1,2) 2797.491 (2,2)

2 0.05 0.1 Closed 265.592 (1,1) 422.966 (1,2) 682.077 (1,3)
Open 269.925 (1,1) 429.818 (1,2) 693.003 (1,3)

0.2 Closed 255.093 (1,1) 405.859 (1,2) 653.493 (1,3)
Open 263.416 (1,1) 418.994 (1,2) 674.366 (1,3)

0.1 0.1 Closed 519.218 (1,1) 816.537 (1,2) 1291.421 (1,3)
Open 527.409 (1,1) 829.098 (1,2) 1310.531 (1,3)

0.2 Closed 496.460 (1,1) 778.283 (1,2) 1225.300 (1,3)
Open 512.042 (1,1) 802.024 (1,2) 1261.086 (1,3)

SCSC 1 0.05 0.1 Closed 609.652 (1,1) 1139.314 (2,1) 1415.781 (1,2)
Open 619.187 (1,1) 1156.901 (2,1) 1436.811 (1,2)

0.2 Closed 583.692 (1,1) 1087.968 (2,1) 1348.827 (1,2)
Open 601.821 (1,1) 1121.272 (2,1) 1388.307 (1,2)

0.1 0.1 Closed 1128.191 (1,1) 2060.096 (2,1) 2456.099 (1,2)
Open 1143.582 (1,1) 2087.428 (2,1) 2484.766 (1,2)

0.2 Closed 1068.626 (1,1) 1939.224 (2,1) 2299.904 (1,2)
Open 1097.013 (1,1) 1989.419 (2,1) 2351.255 (1,2)

2 0.05 0.1 Closed 293.724 (1,1) 503.042 (1,2) 814.007 (1,3)
Open 298.486 (1,1) 511.075 (1,2) 826.770 (1,3)

0.2 Closed 281.998 (1,1) 482.235 (1,2) 778.811 (1,3)
Open 291.132 (1,1) 497.582 (1,2) 803.077 (1,3)

0.1 0.1 Closed 569.657 (1,1) 953.729 (1,2) 1502.638 (1,3)
Open 578.451 (1,1) 967.687 (1,2) 1523.345 (1,3)

0.2 Closed 543.984 (1,1) 906.499 (1,2) 1420.541 (1,3)
Open 560.636 (1,1) 932.611 (1,2) 1458.791 (1,3)

SFSF 1 0.05 0.1 Closed 206.189 (1,1) 337.986 (1,2) 763.342 (1,3)
Open 208.514 (1,1) 339.685 (1,2) 771.475 (1,3)

0.2 Closed 198.324 (1,1) 325.041 (1,2) 730.608 (1,3)
Open 202.751 (1,1) 328.241 (1,2) 746.136 (1,3)

0.1 0.1 Closed 404.375 (1,1) 649.789 (1,2) 1421.432 (1,3)
Open 408.708 (1,1) 652.670 (1,2) 1435.764 (1,3)

0.2 Closed 387.512 (1,1) 620.529 (1,2) 1341.602 (1,3)
Open 395.673 (1,1) 625.835 (1,2) 1368.417 (1,3)

2 0.05 0.1 Closed 209.027 (1,1) 248.830 (1,2) 374.330 (1,3)
Open 211.803 (1,1) 251.256 (1,2) 378.263 (1,3)

0.2 Closed 200.962 (1,1) 239.324 (1,2) 359.581 (1,3)
Open 206.264 (1,1) 243.933 (1,2) 367.098 (1,3)

0.1 0.1 Closed 410.083 (1,1) 485.305 (1,2) 721.037 (1,3)
Open 415.302 (1,1) 489.721 (1,2) 728.174 (1,3)

0.2 Closed 392.803 (1,1) 464.619 (1,2) 687.823 (1,3)
Open 402.675 (1,1) 472.893 (1,2) 701.266 (1,3)

SFSC 1 0.05 0.1 Closed 268.928 (1,1) 690.400 (1,2) 874.395 (2,1)
Open 271.272 (1,1) 699.012 (1,2) 884.795 (2,1)

0.2 Closed 258.617 (1,1) 660.946 (1,2) 837.299 (2,1)
Open 263.059 (1,1) 677.343 (1,2) 856.916 (2,1)

0.1 0.1 Closed 521.069 (1,1) 1279.972 (1,2) 1626.329 (2,1)
Open 525.238 (1,1) 1294.296 (1,2) 1643.159 (2,1)

0.2 Closed 498.408 (1,1) 1210.157 (1,2) 1538.612 (2,1)
Open 506.178 (1,1) 1236.695 (1,2) 1569.413 (2,1)

2 0.05 0.1 Closed 223.354 (1,1) 335.483 (1,2) 545.498 (1,3)
Open 226.144 (1,1) 339.790 (1,2) 553.021 (1,3)

0.2 Closed 214.743 (1,1) 322.211 (1,2) 522.984 (1,3)
Open 220.065 (1,1) 330.453 (1,2) 537.360 (1,3)

0.1 0.1 Closed 437.198 (1,1) 647.963 (1,2) 1033.508 (1,3)
Open 442.398 (1,1) 655.808 (1,2) 1046.700 (1,3)

0.2 Closed 418.649 (1,1) 618.485 (1,2) 981.599 (1,3)
Open 428.458 (1,1) 633.282 (1,2) 1006.306 (1,3)

SSSC 1 0.05 0.1 Closed 503.042 (1,1) 1082.550 (2,1) 1217.137 (1,2)
Open 511.074 (1,1) 1099.479 (2,1) 1235.814 (1,2)
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Table 6 (continued )

BCs. b
a

2h
a

hp
2h

Electrical condition Mode sequences

1st 2nd 3rd

0.2 Closed 482.234 (1,1) 1034.542 (2,1) 1161.780 (1,2)
Open 497.579 (1,1) 1066.688 (2,1) 1197.091 (1,2)

0.1 0.1 Closed 953.725 (1,1) 1982.268 (2,1) 2181.779 (1,2)
Open 967.680 (1,1) 2009.514 (2,1) 2209.926 (1,2)

0.2 Closed 906.485 (1,1) 1868.745 (2,1) 2051.053 (1,2)
Open 932.582 (1,1) 1919.065 (2,1) 2102.378 (1,2)

2 0.05 0.1 Closed 277.770 (1,1) 459.928 (1,2) 744.988 (1,3)
Open 282.290 (1,1) 467.332 (1,2) 756.803 (1,3)

0.2 Closed 266.745 (1,1) 441.134 (1,2) 713.296 (1,3)
Open 275.423 (1,1) 455.305 (1,2) 735.818 (1,3)

0.1 0.1 Closed 541.275 (1,1) 880.650 (1,2) 1393.625 (1,3)
Open 549.739 (1,1) 893.898 (1,2) 1413.568 (1,3)

0.2 Closed 517.271 (1,1) 838.300 (1,2) 1319.938 (1,3)
Open 533.344 (1,1) 863.223 (1,2) 1357.043 (1,3)

SSSF 1 0.05 0.1 Closed 248.830 (1,1) 584.511 (1,2) 865.376 (2,1)
Open 251.256 (1,1) 591.647 (1,2) 875.988 (2,1)

0.2 Closed 239.324 (1,1) 560.378 (1,2) 828.724 (2,1)
Open 243.932 (1,1) 574.021 (1,2) 848.760 (2,1)

0.1 0.1 Closed 485.305 (1,1) 1107.449 (1,2) 1613.274 (2,1)
Open 489.720 (1,1) 1120.164 (1,2) 1630.546 (2,1)

0.2 Closed 464.618 (1,1) 1050.948 (1,2) 1526.671 (2,1)
Open 472.891 (1,1) 1074.812 (1,2) 1558.326 (2,1)

2 0.05 0.1 Closed 220.847 (1,1) 315.254 (1,2) 501.467 (1,3)
Open 223.686 (1,1) 319.359 (1,2) 508.376 (1,3)

0.2 Closed 212.326 (1,1) 302.865 (1,2) 481.042 (1,3)
Open 217.743 (1,1) 310.726 (1,2) 494.265 (1,3)

0.1 0.1 Closed 432.688 (1,1) 612.130 (1,2) 958.963 (1,3)
Open 437.994 (1,1) 619.721 (1,2) 971.419 (1,3)

0.2 Closed 414.362 (1,1) 584.804 (1,2) 912.223 (1,3)
Open 424.380 (1,1) 599.165 (1,2) 935.676 (1,3)

Fig. 3. The variation with the thickness ratio of parameter β for SFSF hybrid rectangular plate ðb=a¼ 1 ; 2h=a¼ 0:05 Þ for closed and open circuit
piezoelectric layers.
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computed frequencies agree well with those of Ref. [28]. In Table 4, we have compared the resonant frequency of a
homogeneous plate with the 3D analytical solution of Ref. [33]. Even for 2h/a¼1/12, the FSDT gives first five frequencies that
agree well with those obtained when the problem is analyzed as 3D. We finally compare our results with those of He et al.
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[30] who used the CLPT and the FEM to compute frequencies of a plate. Table 5 lists the first ten natural frequencies of a
square isotropic plate with Ti–6Al–4V core, the top and the bottom G-1195 N piezoelectric layers, a¼b¼40 cm, h¼5 mm,
and hp¼0.1 mm. It can be seen from values listed in Table 5 that frequencies predicted by the CLPT are a little lower (by at
most 3.5%) instead of being a little higher than those given by the FSDT. It is possible that the FE mesh used in [30] did not
give fully converged values of the frequencies.
4.2. Frequencies of hybrid plates

We have listed in Table 6 the first three natural frequencies of hybrid plates of aspect ratio, b=a; equal to 1 and 2,
thickness-length ratio ð2h=aÞ¼0.05 and 0.1, and hp=2h¼ 0:1 and 0.2, open and closed circuit piezoelectric layers, and
symmetric and asymmetric mechanical boundary conditions. These results imply that with the doubling of the plate width
b, the natural frequency decreases for all types of mechanical boundary conditions except SFSF, and for both closed and open
circuit electrical boundary conditions on major surfaces of the plate. Also doubling the value of 2h=a enhances the natural
frequency. For fixed electrical boundary conditions, natural frequencies monotonically increase as mechanical boundary
conditions on edges y¼b/2 and y¼−b/2 are changed in the following sequence: SFSF, SSSF, SFSC, SSSS, SSSC and SCSC. Of
course, mode shapes depend upon the boundary conditions.
Fig. 4. For b/a¼0.5, 1 and 2, variation with the thickness ratio of parameter β for hybrid: (a) SFSF, (b) SFSC, (c) SSSC, and (d) SCSC rectangular plates of
aspect ratio ð2h=a¼ 0:05Þ for closed and open circuit piezoelectric layers.
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4.3. Effect of piezoelectric layer thickness

Fig. 3 shows the effect of the piezoelectric layer thickness on the fundamental frequency of a square SFSF hybrid
rectangular plate with 2h=a¼ 0:05 . In order to quantify the effect of the piezoelectric layer thickness, we define the relative
difference β in a natural frequency by

β¼ ωjðWith piezoelectric layerÞ−ωjðWithout piezoelectric layerÞ
ωjðWithout piezoelectric layerÞ

� 100 (29)

For b=a¼ 1; 2h=a¼ 0:05, results exhibited in Fig. 3 reveal that for a fixed value of hp=2h the magnitude of β is greater
when boundary conditions on major surfaces of the piezoelectric layers are closed circuit than that when they are open
circuit. Negative values of β imply that the hybrid plate has lower frequency than the corresponding core plate. For the
closed circuit piezoelectric layers, the electro-mechanical coupling due to the matrix [e] has virtually no effect on the
Fig. 5. The variation with the thickness ratio of parameter β for hybrid square plates under SFSF boundary condition: (a) closed circuit and (b) open circuit.
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fundamental frequency. Since the mass density of the piezoelectric material is higher than that of material of the core, the
mean density of the coupled structure increases with an increase in thickness ratio, hp=2h. Values of the elastic moduli of
the core material are higher than that of the piezoelectric material. These two effects tend to decrease the frequency of the
hybrid plate as compared to that of the homogeneous non-piezoelectric material plate. However, the electromechanical
coupling tends to increase the frequency. Initially the mass density and the stiffness effects exceed those due to
electromechanical coupling. The electro-mechanical coupling effect increases with an increase in hp=2h and should increase
the value of β. Negative values of β for values of hp=2h considered in this work suggest that the electro-mechanical coupling
effect is less than that due to the combined effects of the increase in the mass density and the decrease in the stiffness. For a
similar problem studied by Batra and Liang considering 3-D deformations, the value of β was found to be negative for the
first five frequencies.
Fig. 6. The variation with the thickness ratio of parameter β for hybrid square plates ð2h=a¼ 0:05Þ under different boundary conditions: (a) closed circuit
and (b) open circuit.



Fig. 7. For three piezoelectric materials, the variation with the thickness ratio of parameter β for hybrid square plates ð2h=a¼ 0:05Þ under SFSF boundary
condition.
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In Fig. 4, we have displayed effect of the thickness ratio on values of β for the first natural frequency in both closed and
open circuit piezoelectric layers under different mechanical boundary conditions and three values, namely, 0.5, 1 and 2
of b=a. From results for the SFSF hybrid plate shown in Fig. 4(a), we conclude that for open circuit conditions, the magnitude
of β decreases as b=a is increased from 0.5 to 2; however, for closed circuit conditions the ratio b=a has a converse effect on
the magnitude of β. This effect is more noticeable for the open circuit condition than that for the closed circuit condition. For
each set of boundary conditions, the magnitude of β first increases with an increase in hp=2h and then decreases. The value
of hp=2h for which the magnitude of β is maximum depends upon boundary conditions on the edges y¼−b/2, b/2 and on the
electric boundary conditions imposed on major surfaces of the piezoelectric layer. As should be clear from results depicted
in Fig. 4(b), (c) and (d) for the SFSC, SSSC and SCSC plates, respectively, the magnitude of β is more for closed circuit
boundary conditions than that for open circuit boundary conditions. Furthermore, the magnitude of β decreases as b=a
increases from 0.5 to 2 for both open and closed circuit conditions.

For the first frequency of the SFSF hybrid plate having 2h/a¼0.01, 0.02 and 0.05, we have plotted in Fig. 5 the variation of
β with hp=2h for both open and closed circuit boundary conditions. The magnitude of β increases with an increase in the
value of 2h/a. For each one of the three values of 2h/a, the magnitude of β increases with an increase in the value of hp=2h till
hp=2h¼0.28 and 0.25 for closed and open circuit boundary conditions, respectively; subsequently, the magnitude of β
decreases with an increase in the value of hp=2h.

The effect of thickness ratio, hp=2h, on β for different mechanical boundary conditions on the edges y¼−b/2, b/2 and for
both closed and open circuit piezoelectric layers is depicted in Fig. 6(a) and (b), respectively. Results exhibited in Fig. 6(a) for
closed circuit piezoelectric layers imply that the magnitude of β increases with the change in the boundary conditions on the
edges y¼−b/2, b/2 in the following order: SFSF, SSSF, SFSC, SSSS, SSSC and SCSC. However, for the open circuit piezoelectric
layers, this order of mechanical boundary conditions is SSSS, SSSC, SFSF, SSSF, SCSC and SFSC.

For the square SFSF hybrid plate with 2h/a¼0.05, we have plotted in Fig. 7 the variation in β with hp=2h for three
materials of the piezoelectric layer and for both open and closed circuit boundary conditions. The magnitude of β for BaTiO3

is the least and that for PZT-4 the most. The results for the three materials of the piezoelectric layers are qualitatively similar
to each other but the value of hp=2h for which the magnitude of β is the maximum is different.
4.4. Effect of in-plane displacements

In order to investigate the effect of in-plane displacements on the plate natural frequencies, we solve the problem by
setting u0 ¼ v0 ¼ 0 in Eq. (1). Since there is no coupling between the stretching and the bending equations, requiring
u0 ¼ v0 ¼ 0 does not change values of the bending frequencies. The first ten natural frequencies for both closed and open
circuit piezoelectric layers under different mechanical boundary conditions are listed in Table 7. It is seen that considering
the in-plane displacements of the mid-surface includes frequencies of in-plane modes of vibrations among the first ten
lowest frequencies. The absence of in-plane modes of vibration in Srinivas et al.'s [33] solution of the 3D problem was
pointed out by Batra and Aimmanee [34].



Table 7
The effect of mid-plane displacement on the first ten natural frequencies (Hz) for both closed and open circuit piezoelectric layers under different mechanical boundary conditions (b=a¼ 1 ;

2h=a¼ 0:1 ; hp=2h¼ 0:2).

BCs Electrical conditions In-plane displacement Mode sequences

1st 2nd 3th 4th 5th 6th 7th 8th 9th 10th

SSSS Closed With 778.28 (1,1) 1810.74 (1,2) 2727.76 (2,2) 3290.50 (1,3) 4077.56 (2,3) 5040.77 (1,4) 5269.30 (3,3) 5711.71 (2,4) 6751.17 (3,4) 6948.30 (1,5)
Without 778.28 (1,1) 1810.74 (1,2) 2727.76 (2,2) 3290.50 (1,3) 4077.52 (2,3) 5040.77 (1,4) 5269.30 (3,3) 5711.71 (2,4) 6751.17 (3,4) 6948.30 (1,5)

Open With 802.01 (1,1) 1860.77 (1,2) 2797.50 (2,2) 3371.56 (1,3) 4172.06 (2,3) 5149.96 (1,4) 5381.12 (3,3) 5829.61 (2,4) 6880.72 (3,4) 7080.44 (1,5)
Without 802.01 (1,1) 1860.77 (1,2) 2797.49 (2,2) 3371.56 (1,3) 4172.06 (2,3) 5149.96 (1,4) 5381.13 (3,3) 5829.61 (2,4) 6880.72 (3,4) 7080.44 (1,5)

SCSC Closed With 1068.63 (1,1) 1939.22 (2,1) 2299.91 (1,2) 3031.81 (2,2) 3350.00 (3,1) 3831.35 (1,3) 4233.91 (1,4) 4248.07 (3,2) 4466.29 (2,3) 4923.45 (1,5)
Without 1068.63 (1,1) 1939.22 (2,1) 2299.91 (1,2) 3031.81 (2,2) 3350.00 (3,1) 3831.35 (1,3) – 4248.07 (3,2) 4466.29 (2,3) –

Open With 1097.01 (1,1) 1989.42 (2,1) 2351.26 (1,2) 3098.56 (2,2) 3429.511 (3,1) 3904.06 (1,3) 4233.91 (1,4) 4337.47 (3,2) 4550.40 (2,3) 4923.45 (1,5)
Without 1097.01 (1,1) 1989.42 (2,1) 2351.26 (1,2) 3098.56 (2,2) 3429.511 (3,1) 3904.06 (1,3) – 4337.47 (3,2) 4550.40 (2,3) –

SFSF Closed With 387.51 (1,1) 620.53 (1,2) 1341.60 (1,3) 1453.44 (2,1) 1690.79 (2,2) 1791.51 (1,4) 2410.28 (2,3) 2567.56 (1,6) 2971.24 (3,1) 3170.16 (3,2)
Without 387.51 (1,1) 620.53 (1,2) 1341.60 (1,3) 1453.44 (2,1) 1690.79 (2,2) – 2410.28 (2,3) – 2971.24 (3,1) 3170.16 (3,2)

Open With 395.67 (1,1) 625.84 (1,2) 1368.42 (1,3) 1485.17 (2,1) 1715.24 (2,2) 1791.51 (1,4) 2449.66 (2,3) 2567.56 (1,5) 3030.47 (3,1) 3218.32 (3,2)
Without 395.67 (1,1) 625.84 (1,2) 1368.42 (1,3) 1485.17 (2,1) 1715.24 (2,2) – 2449.66 (2,3) – 3030.47 (3,1) 3218.32 (3,2)
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5. Conclusions

We have used the first order shear deformation plate theory to study free vibrations of a transversely isotropic
rectangular plate with surface bonded piezoelectric layers. Equations governing vibrations of the plate derived by using
Hamilton's principle are uncoupled by introducing four auxiliary functions. The hybrid plate is simply supported on two
opposite edges with the electric potential prescribed there enabling us to use a Levy type solution. The uncoupled ordinary
differential equations are solved analytically. Numerical results included in the paper enable us to draw the following
conclusions:
1.
 For a hybrid plate with identical piezoelectric layers perfectly bonded to the top and the bottom surfaces of the core
plate, frequencies of transverse (bending) vibrations are independent of those for in-plane vibrations. Whereas
frequencies of in-plane vibrations are the same for the open circuit and the closed circuit boundary conditions on
major surfaces of the piezoelectric layers, those of transverse vibrations are different.
2.
 For all boundary conditions except SFSF, plate's fundamental natural frequency increases with an increase in plate's
aspect ratio (length/width).
3.
 For the material systems considered, an increase in the piezoelectric layer thickness first decreases the fundamental
natural frequency of the hybrid plate till the difference between the two frequencies reaches a maximum. This critical
value of the piezoelectric layer thickness depends upon the material of the piezoelectric layer for a fixed material of
the core.
4.
 For two opposite edges of a rectangular hybrid plate simply supported, boundary conditions on the other two edges
increase the fundamental frequency in the following order: SFSF, SSSF, SFSC, SSSS, SSSC and SCSC for closed circuit
piezoelectric layers, and SSSS, SSSC, SFSF, SSSF, SCSC and SFSC for open circuit piezoelectric layers.
5.
 For open circuit boundary conditions the change in the natural frequency is due to the stiffness effect as well as the
piezoelectric effect, but for closed circuit boundary conditions it is due to the stiffness effect only.
The three materials, namely, BaTiO3, PZT-6B and PZT-4, of the piezoelectric layer have qualitatively similar but
quantitatively different effects on the fundamental frequency of the hybrid plate.
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Appendix A

The constitutive relation for a thin transversely isotropic piezoelectric material plate polarized in the z-direction can be
written as

sxx
syy
sxy
sxz
syz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

c11 c12 0 0 0
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where

c11 ¼ c11−
c132

c33
; c12 ¼ c12−

c132

c33
; e31 ¼ e31−

c13
c33

e33; Ξ33 ¼ Ξ33 þ
e332

c33
(A.1.3)

K2 is the shear correction factor [26]
Coefficients in Eqs. (16) are defined as

ðA′
11;A

′
12Þ ¼

Z h

−h
ðQ11;Q12Þdzþ 2

Z hþhp

h
ðc11; c12Þdzþ μ7 (A.2.1)

A′55 ¼
Z h

−h
Q55dzþ 2

Z hþhp

h
c55dz (A.2.2)
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A′
66 ¼

Z h

−h
Q66dzþ

Z hþhp

h
ðc11−c12Þdz (A.2.3)
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D′
66 ¼

Z h
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2dzþ
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h
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Coefficients in Eqs. (22) are given by
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″
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where
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Furthermore,
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″
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