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Abstract

The residual strength of a cracked unidirectional fiber reinforced metal matrix composite is studied. We propose a
bridging model based on the Dugdale strip yielding zones in the matrix ahead of the crack tips that accounts for ductile
deformations of the matrix and fiber debonding and pull-out in the strip yielding zone. The bridging model is used to study
the fracture of an anisotropic material and its residual strength is calculated numerically. The predicted results for a
SiC /titanium composite agree well with the existing experimental data. It is found that a higher fiber bridging stress and a
larger fiber pull-out length significantly contribute to the composite’s residual strength. The composite’s strength may be
more notch-insensitive than the corresponding matrix material’s strength depending on several factors such as fiber—matrix
interface properties and the ratio of the matrix modulus to an ‘effective modulus’ of the composite. © 1997 Elsevier Science

B.V.

1. Introduction

The interest in fiber reinforced metal matrix com-
posites (MMC’s) is still growing because of their
advantages including high toughness, and resistance
to impact and thermal shock over ceramic matrix
composites (CMC’s) and polymer matrix composites
(PMC’s). Even though substantial progress has been
made in understanding the strength of MMC’s [1-10],
satisfactory theoretical predictions of their strength
in the presence of notches and cracks can not be
made. However, this is essential for the design of
aerospace and other engineering components. The
notch strength behavior of MMC'’s is different from
that of their matrices. There should also be signifi-
cant differences between the notch strength behav-
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tors of MMC’s and CMC’s since the metal matrices
in MMC’s are much more ductile than the ceramic
matrices in CMC’s. Connell et al. [10] used a crack-
bridging concept to predict the notch strength of a
unidirectional SiC fiber reinforced titanium alloy.
Though their predicted strength agreed well with the
measured values, their model does not consider mi-
cromechanical processes such as fiber debending,
frictional slip and pull-out and the bridging stress
was estimated from the tensile test data. Further-
more, they assumed that bridging was lost in the
wake of the matrix crack. However, the broken
fibers, in the pull-out process, may still bridge the
matrix crack [11].

We propose here a model, based on the Dugdale
strip yielding and micromechanical analyses of fiber
debonding and pull-out and use a singular integral
equation method to predict the residual strength of a
unidirectionally fiber reinforced MMC with a through
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crack. The effects of bridging stress and fiber pull-out
length on the residual strength are studied. The
predicted strength of a unidirectionally SiC fiber
reinforced titanium matrix composite with a central
crack is found to agree well with the experimental
data.

2. Governing equations

We consider plane stress elastic deformations of a
unidirectionally fiber-reinforced metal matrix plate.
Assuming that it can be regarded as orthotropic,
equations governing its deformations are [12]

L 9%y 8%p
8 | 1 2 —0
Yoyl oyl Tlaydy, )
621)2 %y 821)1

2+ 2+
3% dy; dy,9y,

where the transformed stresses 7,5 (subscripts «
and B take values 1 and 2) and stresses O,p are
related to the transformed displacements v, by

T (9_+3_)
A 1 —v5\dy, dy,

E, v, v,
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In Egs. (1) and (2), the transformed coordinates y,
and the transformed displacements v, are given by

)’1=x1/\/x: y2=x2\/x, (3)
u,=u,\/)T, uz=u2/\/7\_, (4)

where x, are rectangular Cartesian coordinates and
u, the displacements of a point. Various constants in
Egs. (1)-(4) are given by [12,13]

By =2(x+ o) /(1= ¥5),
By=vy B + 1,

EoszuEz >

1/4
A= (En/Ezz) )

(5)
Vo =y¥V12¥21»

k=Ey/(2p1,) — v,

(6)

where E||, E,,, u,, vy, and v, are elastic con-
stants of the orthotropic plate. For a unidirectionally
reinforced MMC with fibers in the x,-direction [14—
16]$

E,=ViE + (1 - Vf)Em’

1 +2nV; E/E, —1
2T T o Lny MTE s
1 -7V, E/E, +2
(T+Vue+ (1-Vu, (7
l’l‘ = I“Lmy
. (I_Vf)#f+(1+vf)#m
E,
V12=E—V21=Vfo+(1_Vf)Vm’
2

where V; is the fiber volume fraction and subscripts
f and m stand for the fiber and the matrix, respec-
tively.

3. The proposed model and the problem formula-
tion

Consider an infinite unidirectionally fiber rein-
forced MMC plate with a through crack of length
2a, perpendicular to the fiber direction. The plate is
subjected to a uniform tension o, at infinity in the
fiber (x,)-direction.

For a SiC fiber reinforced titanium alloy (Ti-
6Al1-4V), Connell et al. [10] observed a narrow
plastic strip ahead of the crack tip and essentially all
fibers within the plastic zone broke prior to the
catastrophic fracture of the plate. Based on the exper-
imental observations, they proposed a two level recti-
linear bridging law, i.e. the plastic strip is treated as
a bridged crack and the crack bridging stress is
governed by the unnotched composite’s strength dur-
ing the first stage and by the matrix yield stress with
a contribution from fiber pull-out during the second
stage following fiber breakage. The bridging is lost
when the local strain reaches the failure strain of the
matrix. This model does not consider fiber debond-
ing, frictional slip and pull-out processes which will
definitely influence the bridging law, a relationship
between the bridging stress and the separaticn of the
bridged crack faces. Also, fiber bridging is not nec-
essarily lost in the wake of the matrix crack as the
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broken fibers in the pull-out process may still bridge
the matrix crack [11].

Here we propose a bridging model based on both
matrix yielding and micromechanical analyses of
fiber debonding and pull-out. It is assumed that both
the matrix and fibers contribute to the bridging stress,
ie.

o=V, 0, + Vio; (8)

where V=1 — V,, o is the total bridging stress, o;,
the stress due to matrix yielding and o} the stress
due to fiber debonding and pull-out. It is reasonable
to assume that o, is given by the Dugdale model
[17]

o, =0, H(8 —6) )

where & is the separation between the upper and
lower surfaces of the yielding zone (faces of the
bridged crack), o, is the yield stress of the matrix, J;
is the critical separation at which crack growth oc-
curs in the matrix and H(-) is the Heaviside step
function. §, is related to the yield stress and the
critical value, J_, of the J-integral by

8 =J./ 0. (10)

The bridging stress o; due to fibers can be deter-
mined from micromechanics analyses of the stress
transfer between fibers and matrix [18), fiber debond-
ing [19-21] and fiber pull-out. As we replace the
strip yielding zone by a bridged crack, the elastic
analyses [18—20] may be validated in the elastic
region at the bridged crack face and approximately
apply to the debonding bridging in the real problem.
The elastic analyses [19-21] have also been em-
ployed to study the fatigue crack growth [22,23). In
the first stage fibers are intact and are bonded per-
fectly to the matrix. When the shear stress at the
interface between the fiber and the matrix reaches a
critical value, the fiber is debonded from the matrix
but still remains unbroken. Usually, the energy con-
tribution from the first stage is negligibly small and
we will not consider bridging during this stage. In
fact, we will see below that the bridging energy of
fiber debonding and slipping is also very small as
compared with the fiber pull-out energy in MMC’s
especially when the fiber-matrix interface is not too

weak. In the debonding stage, oy is related to the
separation 8 by [20,21]

O'f/O'o:v‘s/SoH(‘so“a) (11)

where a, is the fiber strength (here we assume that
fibers have a deterministic strength),

_ (1 - Vf)3Er$1002

8
0 27EE},

R, (12)
R is the fiber radius and 7 the frictional shear stress
at the interface between the fiber and the matrix.
When the fiber stress reaches the fiber strength o,
fibers are broken and are subsequently pulled out.
The pull-out stress may be obtained through a simple
shear lag analysis.

o7/ 0, = [1 - (8_80)/(6c_80)]
XH(8,—8)YH(8—8,) (13)

where &, is the fiber pull-out length and o, a critical
stress. Usually o, is less than o,. It is expected that
the stress in the fiber drops rather precipitously from
o, to o, immediately after it breaks. The stress drop
o, — 0, is a characteristic of the fiber—matrix inter-
face properties. A simple shear lag analysis gives
2718,

%= (14)
8. in Egs. (13) and (14) is not a constant but varies
from fiber to fiber. Here we assume that there exists
a statistical average value of &, determined experi-
mentally and use it below. As mentioned above, for
MMC'’s, the fiber debonding energy is generally
negligibly small as compared with the fiber pull-out
energy and &8, << §. For example, for a
SiC /titanium composite studied in [6,10], &, = 0.1
wm, the debonding energy G, = 0.032 kJ/m?, the
average fiber pull-out length exceeds 100 um and
the pull-out energy is a fraction of the bridging
energy, 72 kJ/m?. Hence, the contribution from
fiber debonding may be ignored in the residual
strength calculations. However, it is more reasonable
to regard the debonding energy as the crack tip
energy because the scale of this debonding bridging
is usually very small as compared with other bridg-
ing scales and macro-crack lengths. The debonding
bridging scale may be characterized by the parameter
E,8,/(V;0,) [24], where E, is an ‘effective modu-
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Fig. 1. Schematic representation of bridging curves, (a) 8, < §,,
(b) 8, =8, and (c) &.> 8.

lus’ of the cracked orthotropic plate given below. For
the SiC /titanium composite [6], this parameter equals
about 36 wm which is an order of magnitude smaller
than the macro-crack length in MMC’s. Hence, we
assume that the bridging stress due to fibers is fully
described by Eq. (13) with 8, =0 and a crack tip
energy G, = G, exists. A schematic representation of
the bridging law described by Egs. (8), (9) and (13)
is shown in Fig. 1.

Based on the above assumptions, the boundary
conditions of the problem can be expressed as

o= o +H(x2|—a)(1 Vi)o,
+H(lx,l — a4)V;0.(1~8/8,),

x, =0, Ixl<a, (15)

0,=0, x,=0, [x,]<», (16)

u; =0, x,=0, |x,|>a, (17)

where a = a;, + Aa is half of the length of the initial
crack plus the length of the yielding /bridging zone,
ay and a, initially equal a, and become larger when
complete fiber pull-out and/or real crack growth in
the matrix occur.

The boundary value problem defined by Egs. (1),
(2), (15)-(17) with transformed variables (Egs. (3)

and (4)) results in the following singular integral
equation:

#(s)ds
2'7Tf s —

X 2a 3/5f #(s)ds

+H(|r|—rd)Vf(—;—1;)

O %
= —?-i-H(Irl——ry)(l —vf)—E—

0 0
G,
+H(|r|—rd)Vfr, [rl<1, (18)
E,
where
du, (0, x,)
¢r)=—F—— (19)

2
is the dislocation density along the crack (including
the bridged part) face, r=x,/a, ry=ay/a, r,=
a,/a,
— 2AE,
== 20
\/2(1 + K) ( )

is an ‘effective Young’s modulus’ of the orthotropic
material, 1.e. the cracked orthotropic material be-
haves like an isotropic one with ‘ Young’s modulus’
E, and

2

EO 85/0-5

*

dy =

(21)

1s a nondimensional crack length. The separation
displacement of the crack faces is related to ¢ by

&=2u(0, x2)=2a/:1q‘>(s)ds. (22)

It is clear that ¢ satisfies

f_]]gb(s)ds= 0. (23)

According to the singular integral equation method
[25,26], Eq. (18) under the condition in Eq. (23) has
a solution of the form

o(r )—;(—3—,

where y(7) is continuous and bounded on [— 1, 1].

Irl< 1, (24)
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The stress intensity factor at the tip of the bridged
crack can be evaluated from

1_
Knp: _EEOV"TG ’l’(l) (25)
and the crack tip energy release rate is given by
Kip
Gip = E (26)

4. Residual strength

For a given initial crack, Eq. (18) can be solved
with increasing yielding /bridging length and the
strength o, can be evaluated from Egs. (24)-(26)
with G, = G,. For a monolithic metal panel, the
residual strength is reached when the opening dis-
placement at the initial crack tip or the tail of the
yielding strip equals 8,(=J./0,). For the MMC, the
residual strength is determined by choosing the max-
imum value of the applied stress o, during the
bridged crack growth.

It is convenient to write the solution of Eq. (18)
as

1
o(r) ='§_[0~¥¢|(’) + o,d,(r) +0'c¢’3(r)]
(27)

where ¢,(r) (i = 1, 2, 3) is dimensionless and satis-
fies
o &(s)ds

2w/ s—r

f qf)(s)ds

+ H(Irl = r)V; ( )2a0

8./ 0,
=L(r), Irl<1, (28)
and
[ dis)rds=o0, (29)
where
L(ry=-1, Ly(r)=H(rl=r,)1-V,),

Ly(r)=H(Ir| - ra)Vs.
(30)

Eq. (28) has a solution of the form

&(r )——————d/( ) , i=1,2,3, (31)

1—r2

where ,(r) is continuous and bounded on [—1, 1].
The stress intensity factor at the tip of the bridged
crack can then be evaluated from

K, = __\/—[0' ¥i(1) + o (1) + 0'4’3(1)]
(32)

By equating K, to the assumed critical effective
stress intensity factor K and noting that

K, = E,G. (33)

where G, is the fiber debonding energy regarded as
the crack tip energy, we obtain the following expres-
sion for the residual strength:

o 1
TR | o
o, axa,\ —(1/2)4,(1)
x{[ 1=V +(1/2Vi(0, /0)(8. /8) G, ]

P
mag G

X! ! % 34
e —[—sz(n]—;_\[“wx(n] (34)

Here

G, =0,6](1—
b O;S[( 2 0_8

S s

1 o &
Vi) + =Vi—— (35)

is the bridging energy.

5. Numerical results and discussion

We first consider a SiC /titanium composite stud-
ied in Refs. [6,10]. By equating the bridging energy
G, in Eq. (35) to the experimental value 72 kJ/m®
given in Ref. [10] and using the material properties
data given in Ref. [6], we obtain o /0, =0.754,
5./8,=1.8125 and E,38,/0, = 14.5 mm. The calcu-
lated residual strengths for half crack lengths a, =
0.75, 1.5 and 3.0 mm are 894, 870 and 807 MPa,
respectively, which are close to the experimental
values [10] of 910, 850 and 810 MPa, respectively.
The effects of the specimen size and strain hardening
of the matrix are not considered. A finite specimen
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will have lower residual strength than an infinite one,
and strain hardening tends to increase the strength.
Thermal residual stress effects are also not included
in the present model. Though the effect is significant
in determining the overall tensile behavior of MMC’s
[27,28], it may not strongly influence the residual
strength of cracked MMC'’s.

Figs. 2—4 show the calculated normalized residual
strength oy = oy /0, versus the nondimensional
crack length aj = a,/(E,8,/0;) for various values
of the bridging to yielding stress ratio ¢, /o, and the
critical displacement ratio 6,/ 8;. The effective crack
tip energy is neglected in the calculations since it is
much smaller than the bridging energy as shown in
Section 3. It can be seen from Figs. 2—4 that for
fixed 8,/0, the residual strength increases with an
increase in o,/0;. However, the material becomes
more notch-sensitive for larger values of o./o;, i.e.
for large o, /a,, the residual strength decreases more
rapidly with an increase in the initial crack length,
especially for short cracks. For fixed o./c,, the
residual strength increases with an increase in &,/ 8,
and the composite’s strength becomes less notch-
sensitive. Fig. 5 shows the residual strength for a
composite and for the corresponding metal matrix

*
R

----- G, /0, =3.0, & /85 =0.5

k !
......... G /0, =1.0, & /5, =0.5 ]
- — -0, /q =50, 8 /8 =05

—
|

Normalized residual strength

Nondimensional crack length a3

Fig. 2. Normalized residual strength versus nondimensional crack

length for various bridging to yielding stress ratios and 8, /8, =
0.5.

--------- Q. /0, =1.0, § /8, =1.0
----- G, /o, =3.0, & /8s=1.0
2 - —-q. /6 =50, § /8 =10 ]

Normalized residual strength G

Nondimensional crack length a;

Fig. 3. Normalized residual strength versus nondimensional crack
length for various bridging to yielding stress ratios and &, /8, =
1.0.

with Z?_O/Em = 2.0. The metal’s residual strength is
obtained from the Dugdale model

E

7). (36)

og 2 o -
— = —cos~ (e ¢
o, W

We note that, for this case, the metal’s strength is
more notch-sensitive than the composite’s except for

very short cracks. However, the composite may be-

3 — — T

h ]
[°3 il 1
g E‘ --------- G /0, =1.0, & /8, =2.0 ]
o0 * ----- g, /o, =3.0, & /8s=2.0 ]
g8 2fF\ ~ = -G /g =50, § /8,20
7] r, j
—_ oA ]
g L \‘ \ 4
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-a 3 \\ ~
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AES ~
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N r el -
B=] N T T -
g E T e T ]
g T
Z
0 o TR A ] U
0 1 2

Nondimensional crack length a;

Fig. 4. Normalized residual strength versus nondimensional crack
length for various bridging to yielding stress ratios and 8, /8, =
2.0.
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come more notch-sensitive than the matrix for lower
values of 8./8, and E,/E_. Hence, improved dam-
age tolerance of MMC’s may be achieved by in-
creasing 8./8, and E,/E, . A higher & /8, may be
promoted by a weak fiber—matrix interface so that
fibers break randomly in the plastic region giving a
higher average pull-out length. However, a very
weak interface will lower the fiber bridging stress
resulting in a low residual strength of the composite.
Hence, the fiber-matrix interface has to be opti-
mized. We note that we have assumed a determinis-
tic fiber strength. A statistical consideration of the
fiber strength may result in a scattered residual
strength distribution with a statistical average ap-
proximately described by the proposed model.

The model developed here for fiber reinforced
MMC’s may also be applied to particulate MMC'’s.
For particulate MMC’s, the critical displacement ra-
tio §./9, is low as 8, now represents the average
particle size. The stress ratio o, /o, is also low as g
is proportional to &.. Also, particle rupture often
occurs in particulate MMC’s. Hence, the particle
bridging effect will not be significant. Fig. 6 shows
the residual strength of a cracked particulate MMC.
It is clear that particle bridging does not contribute
much to the residual strength for cracks longer than

*

AR A\ W MMC,0, /c, =1.0, 8, /5, =10
'go o8 ° Metal, E, /B, = 0.5 1
g | 9 ]
2
~ 08 [
<
=
g
‘3
2 04 -

3

o I+
N
é 02
(=]

Z
0 n n n n 13 n P
4} 1 2

Nondimensional crack length a;

Fig. 5. Normalized residual strength versus nondimensional crack
length for a fiber MMC (o, /o, = 1.0 and 8, /8, =1.0) and that
for the corresponding metal matrix.
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Fig. 6. Normalized residual strength versus nondimensional crack
length for a particulate MMC.

0.2E,8,/0, (E, is the effective modulus of the
particulate MMC).

6. Concluding remarks

The crack bridging concept is used to study the
residual strength of a cracked unidirectionally fiber-
reinforced metal matrix composite. Dugdale strip
yielding in the matrix and effects of fiber debonding
and pull-out from the matrix are included in the
analysis. The anisotropy of the material is considered
through an effective modulus. The predicted results
for a SiC/titanium composite agree well with the
existing experimental data. It is found that a higher
fiber bridging stress and a larger fiber pull-out length
significantly contribute to the composite’s residual
strength. The notch sensitivity of the composite’s
strength depends upon several factors such as the
fiber—matrix interface properties and the ratio of the
matrix modulus to an ‘effective modulus’ of the
composite.
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