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Abstract

Deformation fields near a crack tip are analyzed for a thermoviscoplastic body deformed either in an antiplane shear
or in plane strain. The effects of inertia forces and heat conduction are considered, but those of material elasticity are
neglected. By assuming that a shear band initiating from the crack-tip propagates in the direction of the maximum ef-
fective stress. It is found that a shear band propagates along the crack ligament in the body deformed in an antiplane
shear. For a body undergoing plane strain deformations, the direction of the propagation of the shear band depends
upon the mode-mixity parameter and agrees with that observed by Kalthoff. © 1998 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

It was observed in [1,2] that shear bands form
during the hot forging of a platinum bar. Research
activity in the field increased since the observation
[3] of a 20 um wide shear bands during the punch-
ing of a hole in a low carbon steel plate. It was
pointed out that the primary mode of deformation
during the punching of a hole was simple shearing,
and postulated that a material point became unsta-
ble when the hardening of the material due to
strain and strain-rate effects equalled its softening
due to the rise in its temperature (equivalently
when the stress attained its maximum value). Since
then this hypothesis has been adopted by several
investigators [4-6]. Also, subsequent experimental,
analytical and numerical work has shown that the
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strain at the instant of the initiation of the material
instability depends upon the shape, size, and num-
ber of defects present in the body [7-10]. Defects
considered include notches, thickness variation,
weak elements, voids, rigid inclusions and second
phase particles. Here we consider a very strong de-
fect, namely a sharp crack and focus on ascertain-
ing the direction along which a material instability
initiating from the crack-tip will propagate. This
work is motivated by the recent experimental work
in [11,12] for a plate with two parallel cracks or
notches and impacted by a cylindrical projectile
of diameter equal to the spacing between the
cracks. At high impact speeds, they observed that
an adiabatic shear band propagates at approxi-
mately —10° to the notch ligament. The study of
adiabatic shear bands is important since they are
usually followed by shear fractures.

An asymptotic analysis of the deformation
fields near a crack-tip (e.g. see [13-15]) is perform-
ed in this work and angular distributions of stress-
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es and strain-rates in a thermoviscoplastic body
deformed either in antiplane shear or in plane
strain are obtained. Strain-rate hardening and
thermal softening of the material are considered.
Since we focus on analyzing deformation fields
around the crack-tip, no initial-boundary value
problem is analyzed. The direction of shear insta-
bility is assumed to coincide with that of the max-
imum effective stress, and for plane strain
deformations is found to agree with the test values
[11,12].

2. Formulation of the problem

Consider a cylindrical coordinate system (see
Fig. 1) with origin at the crack-tip to study defor-
mations of a thermoviscoplastic body subjected to
either antiplane shear (i.e. mode III) or plane
strain (mixed mode I and mode II) loading. Elastic
deformations are neglected, and the material is as-
sumed to be incompressible. This is reasonable
since deformations near the crack-tip are expected
to be large, and hence in the plastic range which
generally are isochoric. The governing equations
can be written as follows:

pv=divS — Vp, (1)
peT = kV*T + tr(SD), (2)
S =rp(1 —al)(1+ bI)’”D/(%I) , (3)
yd
r
)
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Fig. 1. A schematic sketch of the problem studied.

where p is the mass density, v the velocity, S the
deviatoric Cauchy stress, p the hydrostatic pres-
sure, ¢ the specific heat, k the thermal conductivity,
T the temperature rise, D the strain-rate tensor, x,
a strength parameter, « the thermal softening coef-
ficient, b rate constant, m strain-rate sensitivity pa-
rameter, and I = (2 tr Dz)l/ 2. All of the material
parameters have positive values. Eqgs. (1)—(3) are
written in the spatial description, a superimposed
dot indicates the material time derivative, V is
the gradient operator, V* the Laplacian, div the di-
vergence and tr the trace. Eq. (1) expresses the bal-
ance of linear momentum and Eq. (2) the balance
of internal energy. The balance of mass will be id-
entically satisfied by the assumed velocity fields.
Eq. (3), given in [16], generalizes Litonski’s one-di-
mensional relation [17] to three-dimensional prob-
lems. It has been used [16] to study penetration
problems; to analyze deformation fields around a
shear band [18]; and to analyze the initiation and
growth of shear bands [19]. Eq. (3) implies that
@ tr SST)"* = VBio(1 — aT)(1 + bI)"  which is
von-Mises yield criterion with the flow stress de-
creasing with a rise in the temperature but increas-
ing with an increase in the strain-rate. Eq. (3) may
be viewed as describing a non-Newtonian fluid
with viscosity (= ko(1 —aT)(1 +b1)"/I) a func-
tion of the strain-rate and temperature. However,
for a fluid, the viscosity assumes a finite value at
zero strain-rate but it is infinite for the material de-
scribed by Eq. (3). Such constitutive relations have
been used to model large deformations of metals
e.g. see [20].

Assume that crack surfaces are traction free and
are thermally insulated. Thus

_or
in_ae

where ¢ = —pl1 + S is the Cauchy stress tensor.
Since the deformation fields around the crack-tip
will be analyzed, therefore boundary conditions at
surfaces far from the crack faces are not specified.

0, 4)

a@ﬂlin = O-Brlin = 0¢,

+n

3. Shear instability in mode III deformations

In antiplane shear, only the out of plane com-
ponent of velocity, w(r, 8,¢), is non-zero. That is,
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v =(0,0,w(r,0,1))

and the hydrostatic pressure, p, may be set equal to
0. In terms of w Egs. (1)~(3) become:

O (sow) 10 (sow\ sdow  ow
o \15r ) troe\ias ) T = Pa O

10 ( Og 1 &g _ Og
aw\® 1 aw\]"”
= [(5) +2(%) } | 7
s = xog(1 +bI)", (8)
g=1-—aT. 9)

It is required that 0 < g < 1.

A solution of Egs. (5)—(9) in the immediate vi-
cinity of the crack-tip just before the material there
becomes unstable is sought. Assume that (e.g. see

[21]:

w = fi()r*Ww(0), (10)
s = f2(1)r5(6), (11)
g = g(1) + /()7 g(0), (12)
I = f1(t)*1(6), (13)

where w, §, 7 and I are non-dimensional functions
of 6 alone, a, b, h and d are constants, and
fisfo, f3,fa and go are dimensional functions of
time ¢. go(f) equals the value of the thermal soften-
ing function at the crack-tip, 0 < go(#) <1 prior to
the initiation of the shear instability, and # > 0.
Other forms of the thermal softening function do
not yield a physically acceptable solution. Note
that once a shear band has initiated, the solution
near the crack-tip will generally be not of the type
(10)«(13). Substitution from Egs. (10)(13) into
Egs. (5)«9), assuming that gy(¢) and f(f) are
bounded at the crack-tip, and requiring that the
variable r drop out of each equation in the limit
as r — 0, yields coupled ordinary differential equa-
tions in @ for the angular functions in Eqgs. (10)-
(13). A consequence of the constitutive relation

(8) and Egs. (10)~(13) is that the near-tip fields
are of HRR type [13,14,22]. That is

w = f(£)rmw(8), (14)
s = Kob"go (1) (f (1))"r™ T75(0), (15)
g = go(O)[1 + oo™ (f (1)) r&(0) /K], (16)
1= f(e)r=i(0), (17)

and functions w, 5, g and I satisfy

W+ (m — 1)Wi'/i+ﬁ»v= 0, (18)

§+g-3=0, (19)
2 172

§im == [(n’"—mw> + (fv’f] , (20)

where the amplitude factor f(¢) is assumed to be
positive. A prime in Egs. (18)—(20) indicates differ-
entiation with respect to 6. In Egs. (14)—(17), f(¢)
has the dimensions (meter)!/1*")/s. It can be veri-
fied that all equations are dimensionally correct.
Note that all material parameters except the
strain-rate sensitivity m drop out of Egs. (18)-
(20). Thus the asymptotic results at the crack-tip
are valid for all rigid thermoviscoplastic materials
obeying the flow rule (3). In the derivation of
Eq. (19), kf; = af>fs is used. This implies that the
amplitude of the strain-rate at the crack-tip is af-
fected by thermal parameters & and o. However,
thermal capacity and the mass density play negligi-
ble roles in the asymptotic solution. Since the mo-
tion is antiplane shear, therefore

#(0) = #(0) = 0. (21)
The boundary conditions (4) require that
W(r) = () = 0. (22)

The two second-order ordinary differential
Eqgs. (18) and (19) for w(0) and g(0) subject to
boundary conditions (21) and (22) are solved over
the interval (0,m) by using the shooting method
with a fourth-order Runge-Kutta integration
scheme. The angular distributions of stresses,
strain-rates and the thermal softening function
around the crack-tip are depicted in Fig. 2(a)—(c)
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Fig. 2. Dependence upon the angular position in degrees of (a)
stresses, (b) strain-rates and (c) the thermal softening function
near the crack-tip for m = 1/3.

for m = 1/3; their amplitudes are determined by
requiring that the_rpaxi%um value of the effective
stress, G, = (2 tr(SST)) ", equals 1. It is evident
that Sy, and Dy, are maximum at 6 = 0. Also the
effective stress 4. and1 the effective plastic strain-
rate j, = (2 tr(DD"))"" are maximum at 0 = 0.
Recall the work in [3] and assume that a material
point becomes unstable when the effective stress
there attains its maximum value. Thus, if we as-

sume that a shear instability or a shear band prop-
agates in the direction of the maximum effective
stress then in a cracked thermoviscoplastic body
deformed in antiplane shear, an adiabatic shear in-
stability initiating at a crack tip will propagate
along the crack ligament. This result is valid for
all thermoviscoplastic materials that obey the flow
rule (3). Because of the asymptotic analysis used,
the result is valid in the immediate vicinity of the
crack-tip aid the direction of the shear band
may change once it has propagated away from
there. The variation of &, vs. 8 for m = 1/13 plot-
ted in Fig. 3 suggests that the direction of propa-
gation of the shear instability from the crack-tip
is the same as that for m = 1/3, and probably is
less sensitive to the value of m.

4. Shear instability in plane-strain deformations

Since the material studied herein is assumed to
be incompressible, the continuity equation or the
balance of mass,

trD =0, (23)

is identically satisfied if the radial and tangential
components u, v of the velocity v are defined as
follows in terms of a stream function ¢.

_19¢ 1 09 _

U= rgé—;fb,m v=— ar "4’,- (24)
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Fig. 3. Dependence upon the angular position in degrees of the
effective stress near the crack-tip for m = 1/13.
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Substitution from Eq. (24) into Egs. (1)-(3)
yields:

zé‘ (VEDH) +§%(;D12) +z§D QD:Pua

ror\ I P17 B
(25)
29 /s 20 rs 2s 19p
Tar (r7P0) =55 (70n) + 77Pe — 5= 4!
(26)
10 1 )
k[;g (rg,) + ﬁg,oe] — asl = pcg, (27)
I= 2(D%1 +D%2)1/2: (28)
s = Kkog(1 + bI)", (29)
where
1 1
Dy = ;¢,r9 - ﬁqf’,@a (30)
R (1)
12 — 2 r2 100 r w [T B

are deviatoric strain-rates. The non-zero compo-
nents of the Cauchy stress tensor are given by

O = Z;Dn -p (32)
s

Gog = —2;D11 - D (33)

Grg — 2;912. (34)

The elimination of pressure p from Egs. (25) and
(26) gives

2 (r500) . +2(300) 45 (2)
- 2(r;D12) + 2(1—D11> , - 2(§D12) ,

= (pu) o — (prv),- (35)

Assuming expressions (11), (12) and (13) for s, g
and I, respectively, and

¢ = filt)r$(6), (36)

p=fs()r°p(6), (37

for ¢ and p, a reasoning similar to that used in the
previous section gives expressions (15), (16) and
(17) for s, g and I, respectively, and

d = f(t)rEm(0), (38)
p = = b (0 (0" (). (39)

With Egs. (15)~(17), (38) and (39), Egs. (35), (27)~
(29) and (25) can be written as follows:
(14 (m — DI2C " + A(m — 1)C/I

142m

B 5 =0 40
+ +( )2¢ (40)
g +g—351=0, (41)
1/2
§m =] = [4(1:_' ) (¢ +C2] : (42)
A m24Am) s iy jm-27
p—2(—————(1+m)2>1 Yo'+ (m— DI"C
+ ™1, (43)
where
~ 14+2m \ -
2 2
4= _7—3[4(1_“”-'__’”> J)/d;n_l_cc,:l
2 2~ -
+1 [4(m> (4" +4(m> ¢
2 1+2m -,
+(C') +C(1+m)z¢], (45)
_ ( 1) 17 m in
B”4<(1 m)’* )I 19+ (1+m)2¢
ﬂ(l(—zf;n—';')c 4 (m—1)(m—-2I2(I'C
+2(m—DIT'TC. (46)

The boundary conditions (4) imply the following.
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- 142m
e e LI (@7)
~ur 14+ 6m
I o L (48)
gl =0 (49)

Under mixed mode conditions, a near-field mix-
ity parameter, M”, defined as

MP = % tan™! [lim ounlr,0 = 0) ] (50)

r—0 O'rg(r, 0= O)

has been introduced in [15]. It characterizes the rel-
ative contributions of modes I and II; M? = 0 cor-
responds to pure mode II and M? =1 to pure
mode I. The parameter M? identifies all possible
angular distributions of stresses, strain-rates and
temperatures.

The fourth-order ordinary differential Eq. (40)
for ¢ and the second-order ordinary differential
Eq. (41) for g under the boundary conditions
(47)—(49) are solved by using the shooting method
and the fourth-order Runge-Kutta integration
scheme. Shih [15] pointed out that the shooting
method and its variants are inadequate for the
mixed mode analyses. It is found that for
A8 =102 degree and m = 1/13, the shooting
method performed well. The step size Af should
be decreased for smaller values of m.

Figs. 4(a)(c) depict the dependence upon 8 of
the angular functions for stresses, strain-rates
and the thermal softening for m=1/3 and
M?P = —0.22; the amplitude has been determined
by normalizing it so that the maximum value of
6. for —n < 0 < wequals 1. It is clear that the effec-
tive stress and the effective plastic strain-rate are
maximum at 6 ~ —5.8°. Thus, according to the cri-
terion stated in the previous section, a shear insta-
bility initiating from the crack-tip will propagate
along 6 =—5.8° for m=1/3 and M? = -0.22.
The dependence of the angle #; along which a
shear instability propagates upon the near-field
mode-mixity parameter is exhibited in Fig. 5 for
m=1/2,1/3 and 1/13. These results evince that
0; does not vary much with m, and
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Fig. 4. Variation with the angular position in degrees of (a)
stresses, (b) strain-rates and (c) the thermal softening function
near the crack-tip for m = 1/3 and near-tip mode-mixity pa-
rameter M? = —(0.22.

6,=0 for M? =0,
(51)
6, =95.6° forM? =1.

Thus, under pure mode II conditions near the
crack-tip, a shear instability propagates along the
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Fig. 5. Dependence of the direction of shear band upon the
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crack ligament, but under pure mode I conditions,
it propagates along a direction that makes an an-
gle of 95.6° to the crack ligament.

Another parameter, M* [15] defined as

8_2 1 1 0'09(7‘,6=O)
M= T tan [’lirg a,5(r,0 =0)

2. (K
—Etan (1?“) (52)

is wmiroduced 10 characierize the re321ve SIrEngns
of & aad & ia the fac-field uader mixed-made
conditions. Here K; and Kj; are respectively the
stress intensity factors under pure mode I and
mode II loading. M* equals 0 for pure mode II
and M¢ =1 for pure mode I conditions in the
far-field. The finite element method used in [15]
to analyze the plane strain deformations of a pow-
er law hardening material; the computed relation
between MP and M? is shown in Fig. 6. In this fig-
ure, only positive mixities are shown; the relation-
ship between negative mixities can be extrapolated.

Time histories of stress intensity factors Kj(r)
i i) RO SRS SRS 0P P, Ty e deher-
mined in [23], and imply that for the time interval
©f mieresy, e far-Hdd mode- MmN parameiel
nearly equals —0.25 when Poisson’s ratio for pla-
te’s materiai is 0.25. In Fig. 6, M* = —0.25 corre-
sponds W TRa-TRIE wanrks of et —843
~0.30 for 1 /12 m< 1/2. From Fig. 5, it can be
concluded that for 1/13<m< 1/2, the direction
of propagation of the shear instability will make
an angle of approximately —2¢° 1o —10° with the
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Fig. 6. Near-field mode-mixity parameter vs. far-field mode-
mixity parameter for various values of m [15].

crack ligament. This agrees reasonably well with
Kalthoff’s observation that a shear band propa-
gates at —15° to —5° to the crack ligament.

5. Cauclusicas

Asymptotic fields for the velocity, stress and
thermal softening near a crack-tip are analyzed
for a rigid thermoviscoplastic body deformed ei-
ther in antiplane shear or in plane strain. Strain-
rate hardening and thermal softening of the mate-
riad are considered. Bath for antiplane shear aad
plane strain deformations, the stresses and strain-
rates are found to vary as r~™(3® and p~U/(+m)
respectively where » is the distance from the
crack-tip and m is the strain-rate hardening expo-
e, Stiesses arer doe assunred 2o depend upon
the temperature which takes on a maximum value
21 7NE TIath AT and URUreasts Tineasy with . As-
suming that a shear instability initiating at the
crack-tip will propagate along the direction of
I AR Sl smess, oo fouad that =
shear instability will propagate along the crack lig-
ament in a body deformed in antiplane shear.
However, for a body undergoing plane strain de-
{ormations, the direction of propagation of the
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shear instability depends upon the near-field
mode-mixity parameter but not much on the
strain-rate hardening exponent m. For loading
conditions of Kalthof’s experiments and
1/13<m<1/2, the angle between the direction
of propagation of the shear instability and the
crack ligament varies between —20° and —10° which
is close to the observed values of —15° to —5°.
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