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Abstract

A constitutive relation that accounts for the thermally activated dislocation motion and microstructure interaction is

used to study the stability of a homogeneous solution of equations governing the simple shearing deformations of a

thermoviscoplastic body. An instability criterion and an upper bound for the growth rate of the in®nitesimal defor-

mations superimposed on the homogeneous solution are derived. By adopting Wright and Ockendon's postulate, i.e.,

the wavelength of the dominant instability mode with the maximum growth rate determines the minimum spacing

between shear bands, the shear band spacing is computed. The e�ect of the initial dislocation density, the nominal

strain-rate, and parameters describing the initial thermal activation and the initial microstructure interaction on the

shear band spacing are delineated. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Adiabatic shear bands are narrow regions of
intense plastic deformation that usually form
during high strain-rate deformation of several
metals and some polymers. Their formation sig-
nals a transition from a generally homogeneous
deformation to a nonhomogeneous one involving
high strain gradients in a narrow region. These
shear bands precede shear fractures. Thus there is
signi®cant interest in studying their initiation,
propagation, width and spacing between adjacent
bands.

The theoretical/analytical analyses of the
problem can broadly be classi®ed into two cate-
gories: (i) linear stability analysis, and (ii) numer-

ical solution of the coupled set of nonlinear
equations. The linear stability analyses (e.g., see
[1±7]) are aimed at delineating when a shear band
initiates, and the spacing between them. The
complete solution of the coupled nonlinear set of
equations provides detailed information about the
history of various deformation ®elds.

Most investigations have employed phenome-
nological constitutive relations. It was pointed out
in [8±10] that these are valid only within the range
of data used to calibrate them. These models do
not account for the radically di�erent behavior of
face-centered-cubic (FCC) and body-centered-
cubic (BCC) metals and the grain size. They [8±10]
have proposed a constitutive relation that ac-
counts for microstructural changes occurring in
the body while it is being deformed. A dislocation
mechanics based constitutive relation involving
only one variable, namely, the total dislocation
density has been proposed in [11±13]. This
accounts for the e�ects of dislocation±dislocation
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interaction, evolution of subgrain size, grain di-
ameter and twinning. Such a relation was used in
[14] to study the initiation and development of
shear bands in a layer with a small geometric de-
fect and subjected to double shear impact loading.
The primary characteristics of the computed so-
lution are similar to those obtained with a phe-
nomenological constitutive relation (e.g., see
[15,16]).

A hybrid constitutive relation that accounts for
the microstructural interaction [11±13] and ther-
mally activated mechanisms [8±10] is used here.
The linear stability analysis is performed to extend
the instability condition [2] for a phenomenologi-
cal constitutive relation to the present constitutive
relation. The e�ect of microstructural parameters
on the average strain when the homogeneous so-
lution of the governing equations becomes unsta-
ble, and also on the minimum spacing between
adjacent shear bands is delineated.

2. Formulation of the problem

Simple shearing deformations of an isotro-
pic and homogeneous thermoviscoplastic body
bounded by the planes y � �h and sheared in the
x-direction by prescribing velocities v � �V0 on
the upper and lower bounding surfaces are ana-
lyzed. The bounding surfaces are taken to be
thermally insulated. Equations governing the de-
formations of the body are

q�c � s;yy ; _c � v;y ; �1�
qc _T � kT;yy � bs _c; �2�
s � s1 � s2; �3�
s1 � B1eÿ�b1ÿb2 ln _c�T � B2c

1=2eÿ�a1ÿa2 ln _c�T; �4�
s2 � ba0l0�1ÿ AT ÿ BT 2�k1=2; �5�
dk
dc
� f �k; _c; T �; �6�

vjy��h � �V0; T;y jy��h � 0: �7�

Here q is the mass density, c the shear strain, s the
shear stress, a superimposed dot denotes the ma-

terial time derivative, a comma followed by y the
partial derivative with respect to y, c the speci®c
heat, T the absolute temperature, k the thermal
conductivity, and b is the Taylor±Quinney factor
representing the fraction of plastic working con-
verted into heating. Following the work in [8,12], s
is written as the sum of s1 and s2. The part s1 of the
shear stress given by (4) is contributed by the
thermally activated dislocation interactions [8]. In
it, B1; B2; b1, b2, a1 and a2 are constants; B1 and
B2 are related to the reference Gibbs free energy,
the dislocation activation area at zero tempera-
ture, and the magnitude of the Burger vector. For
hexagonal closed-packed (HCP) metals, B1 6� 0;
B2 6� 0; for face-centered-cubic (FCC) metals,
B1 � 0; B2 6� 0; and for body-centered-cubic
(BCC) metals, B1 6� 0; B2 � 0. The part s2 of the
shear stress given by (5) depends on the thermo-
mechanical history of the plastic deformation
through the internal variable k whose evolution
is described by Eq. (6); this internal variable may
be identi®ed as the total dislocation density. In
Eq. (5) b; a0; l0; A and B are constants. The
evolution rate, f, of k is assumed to be nonneg-
ative.

The stability of a homogeneous solution of the
governing equations is studied herein; thus the
initial conditions are not needed.

3. Instability analysis

The ordered set of variables c; T ; s and k is de-
noted by s. In a time-dependent homogeneous
solution of Eqs. (1)±(7), v � V0y=h. Such a solution
is designated by ~s � �~c; ~T ; ~s; ~k�T, and at time t0 the
in®nitesimal perturbation

ds�y; t; t0� � eg�tÿt0�einyds0; t P t0; �8�
is introduced. Here n is the wave number, g its
growth rate at time t0. For the homogeneous so-
lution to be unstable, Re�g� > 0; otherwise it is
stable. Substitution of s � ~s� ds into Eqs. (1)±(7)
and the linearization of the resulting equations in
ds0 yield A�s0; n; g; t0�ds0 � 0 which has a nontriv-
ial solution only if det A � 0. This gives the fol-
lowing cubic equation for the growth rate g:
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q2cg3 � q�ÿb _c0s0
;T � kn2 � cs0

; _cn
2�g2

� �bs0s0
;Tn2 � qc�f 0s0

;k � s0
;c�n2 � ks0

; _cn
4�g

� k�f 0s0
;k � s0

;c�n4 � 0: �9�
Here s0

;T � os=oT js�s0 , and the superscript zero on
a variable signi®es its value for the homogeneous
solution at time t0. Variables s0

;T; s0
;k; s

0
;c and s0

; _c

denote, respectively, the thermal softening, hard-
ening due to the increase in the dislocation density,
strain-hardening and strain-rate hardening of the
material. Note that s0

;T6 0; s0
;k P 0; s0

;c P 0 and
s0
; _c P 0. Also, f 0 P 0, and q; c; k and b are posi-

tive. Thus the coe�cients of g3; g2 and the last term
in Eq. (9) are positive. For Eq. (9) to have a pos-
itive root, it is necessary that s0

;T < 0. Hence, if
s0
;T � 0, then there will be no instability implying

thereby that thermal softening is a necessary con-
dition for the onset of material instability.

In terms of nondimensional variables

�g � kg
cs0

;c

; �n2 � k2n2

qc2s0
;c

; I � cs0
; _c

k
;

J � ÿ bs0s0
;T � qcf 0s0

;k

qcs0
;c

; C � ÿ bks0
;T _c0

qc2s0
;c

;

E � 1� f 0s0
;k

s0
;c

;

�10�

the spectral Eq. (9) becomes

�g3 � �C � �1� I��n2��g2 � �I �n2 � 1ÿ J ��n2�g� E�n4 � 0;

�11�
which is similar to Eq. (3.12) in [2]. For long
wavelengths, �n! 0 and three solutions of Eq. (11)
are

�g � 0; 0;ÿC �12�
which are all nonpositive. Thus, the homogeneous
deformation is stable for perturbations with very
long wavelengths. For extremely short wave-
lengths �n!1. Dividing both sides of Eq. (11) by
�n4 and taking the limit as �n!1, there results

�g � ÿk�s0
;c � f 0s0

;k�=�s0
; _ccs°;c�6 0 �13�

and the shear deformation is again stable. Thus, if
an instability occurs, it must occur at 0 < �n <1.

For the given values of t0 and �n, Eq. (11) will
have either all three real roots or one real root and
two complex conjugate roots; the root �gm with the
largest positive real part will govern the instability
of the homogeneous solution s0 � ~s�t0�. For ®xed
t0, �gm is a function of �n. Assume that �gm is real
which is the case for perturbations introduced
after the shear stress has attained its peak value.
The wave number �nm for which �gm is maximum can
be computed from

o�g

o�n ��g��gm ;
�n��nm�

��� � 0: �14�

Eqs. (11) and (14) give

�n2
m � �gm

�J ÿ 1� ÿ �1� I��gm

2�E � I �gm�
: �15�

The requirement �n2
m P 0 implies that

06 �gm6
�J ÿ 1�
�1� I� � g�m: �16�

Evaluating Eq. (11) at �n; g� � ��nm; �gm�, and sub-
stituting for �nm from (15) results in

4�I �gm � E���gm � C� � ��J ÿ 1� ÿ �1� I��gm�2

� �1� I�2��gm ÿ g�m�2: �17�

Following the reasoning used in [2], it is concluded
that whenever

J > 1� 2
�������
EC
p

or

ÿ bs0s0
;T

qcs0
;c

ÿ f 0s0
;k

s0
;c

> 1� 2

���������������������������������������������
ÿ 1� f 0s0

;k

s0
;c

 !
bks0

;T _c0

qc2s0
;c

vuut ; �18�

Eq. (17) has a solution �gm > 0. Thus Eq. (18) is the
instability condition. If f 0 � 0 or s0

;k � 0, then
Eq. (18) reduces to Bai's criterion for instability,
i.e. Eq. (4.1) in [2].

For locally adiabatic deformations, k � 0 and
the instability criterion (18) becomes
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ÿ bs0s0
;T

qcs0
;c

ÿ f 0s0
;k

s0
;c

> 1: �19�

It follows from Eqs. (18) and (19) that the strain-
rate hardening of the material does not directly
in¯uence the initiation of material instability.
However, it a�ects the values of s0; f 0 etc., and
indirectly in¯uences the onset of the material in-
stability. Eq. (19) implies that for locally adiabatic
deformations the material instability will occur
only when the thermal softening exceeds the
combined e�ects of the hardening of the material
due to plastic straining and an increase in the
dislocation density. However, in the presence of
heat conduction, higher values of the nominal
strain-rate delay the onset of material instability.

4. Numerical results and discussion

Numerical results are computed for a high
strength steel with the function f in Eq. (6) taken as

f �k; _c; T � � M ÿ Ka� _c; T ��kÿ k0�;
Ka� _c; T � � K0; 0 < T 6 Ta; or _c P _c0; �20�
Ka� _c; T � � K0� _c= _c0�ÿ2m0 ; T P Ta; and _c6 _c0;

where M is the multiplication factor, Ka the anni-
hilation factor, k0 the initial dislocation density, K0

the annihilation constant at T � 0, m0 the absolute
strain-rate hardening sensitivity, and Ta is the
transition temperature. The multiplication factor
M is related to the mean free path of dislocations
and the magnitude of the Burgers vector. M is
taken to be a constant in this work. When
06 T 6 Ta or _cP _c0, Eq. (6) can be integrated with
the following result:

k � k0 � M
Ka

�1ÿ eÿKac�: �21�

A homogeneous solution of Eqs. (1)±(7) and
Eq. (20) is

~s �
~c
~T
~s
~k

8>>><>>>:
9>>>=>>>; �

c0 � V0

h t
~T �t�
~s� ~T �

k0 � M
Ka
�1ÿ eÿKa~c�

8>>>><>>>>:

9>>>>=>>>>; �22�

where ~T is a solution of

~T;T � b _c0

qc
~s� ~T �; ~s� ~T � � sj�c�~c; _c� _c0; k�~k; T� ~T �; �23�

_c0 � V0=h is the prescribed nominal strain-rate and
c0 is the initial strain.

The following values are assigned to various
material parameters when computing numerical
results:

B1 � 1:17 GPa; b1 � 6:6� 10ÿ3=K;

b2 � 3:4� 10ÿ4=K; K0 � 9:23;

m0 � 1:47� 10ÿ4; b � 0:9;

A � 3:564� 10ÿ6=K; B � 3:026� 10ÿ7=K2;

b � 2:48� 10ÿ10 m; k0 � 6:2� 1012=m2;

M � 1:2� 1014=m2; a0 � 5:38; �24�
l0 � 84 GPa; q � 7855 kg=m3;

k � 60 W=�mK�; c � 460 J=�kg K�;
T0 � 300 K; c0 � 0:01; _c0 � 104=s;

Ta � 558 K:

Here T0 is the initial temperature and k0 is the
initial dislocation density. Values in Eq. (24) for a
high strength steel are chosen for illustrative pur-
poses only, and are taken from [14]. When study-
ing the e�ect of a material parameter on the
localization process, all other material parameters
were kept ®xed.

Figs. 1(a)±(c) exhibit the evolution of the shear
stress, the temperature and the dislocation density
for homogeneous simple shearing deformations of
the body at nominal strain-rates of 103; 104 and
105=s. It is clear that the shear stress required to
plastically deform the material increases with an
increase in the nominal strain-rate. For a ®xed
nominal strain-rate, the shear stress ®rst increases
because of the strain-hardening of the material,
attains a maximum value at c ' 0:2 when the
softening of the material due to its being heated up
equals its hardening, and subsequently decreases
with an increase in the shear strain. The tempera-
ture increases monotonically because the bound-
aries of the body are thermally insulated and heat
is generated due to plastic working. The tempera-
ture rise equals about 30 K when the peak in the
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shear stress occurs. The dislocation density k ®rst
increases with an increase in the plastic deforma-
tion of the body and reaches a saturation value of
about 1:9� 1013=m2 at a plastic strain of approx-
imately 0.6; the maximum value of k equals 3k0.
The evolution of the dislocation density for the
range of strain-rates considered herein is inde-
pendent of the nominal strain-rate since Ka in
Eq. (21) equals K0 for _c0 � 103, 104 and 105=s.

An instability will occur when the homogeneous
solution satis®es the inequality (18); the minimum
value of the nominal strain given by inequality (18)
is denoted by c0

i and is called the instability strain.
For seven di�erent values of the initial tempera-
ture T0, Figs. 2±4 evince the dependence of the

instability strain c0
i , the corresponding shear stress

s0
i , and the dislocation density k0

i upon the nominal
strain-rate _c0. For a ®xed value of _c0, the instability
strain c0

i increases with an increase in the initial
temperature; a similar result was obtained in [17]
for the structural instability strain. They used a
phenomenological constitutive relation, consid-
ered the dependence of the material parameters
such as the shear modulus, the speci®c heat and
the thermal conductivity on the temperature, and
the specimen had a geometric defect in it. Here
only the shear modulus is taken to depend on the
temperature (cf. Eq. (5)). Note that the homoge-
neous solution becomes unstable soon after the
shear stress attains its peak value. At low initial

Fig. 1. Evolution of (a) shear stress, (b) temperature, and (c) dislocation density at the three di�erent nominal strain rates.
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Fig. 2. For di�erent values of the initial temperature, variations of instability strain with log of strain-rate: (a) 100±500 K and (b) 450±

600 K.

Fig. 3. For di�erent values of the initial temperature, variations

of shear stress at instability initiation with log of strain-rate: (a)

100±500 K and (b) 450± 600 K.

Fig. 4. For di�erent values of the initial temperature, variations

of dislocation density at instability initiation with log of strain-

rate: (a) 100±500 K and (b) 450±600 K.
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temperatures, the instability strain increases with
an increase in the nominal strain-rate but at initial
temperatures greater than or equal to 300 K, the
instability strain decreases with an increase in the
nominal strain-rate. For each one of the initial
temperatures considered, the shear stress at the
onset of material instability increases with an in-
crease in the nominal strain-rate. The same result
was obtained in [18] for four di�erent phenome-
nological relations. At T0 � 100 K, the dislocation
density at instability sharply increases when the

nominal strain-rate is increased from 102 to 106=s
but for T0 � 200 K, the change in k0

i with an in-
crease in _c0 is relatively very small. Also, for
T0 P 300 K, k0

i decreases slowly with an increase in
_c0
i . Note that k0

i depends exponentially upon c0
i ,

and k0
i increases monotonically with c0

i . Because of
the rather small values of the plastic shear strain at
the onset of instability, the rise in the temperature
up to the initiation of instability is also quite small
(about 20 K), and is essentially the same for all
values of T0 and _c0 considered herein.

Fig. 5. Dependence of instability strain on nominal strain-rate for di�erent values of (a) initial thermal activation parameter,

(b)microstructure interaction parameter, and (c) initial dislocation density.
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Figs. 5(a)±(c) exhibit the relationship between c0
i

and ln _c0 for di�erent values of the initial thermal
activation parameter B1, the microstructure inter-
action parameter a0, and the initial dislocation
density k0. For all cases studied, the instability
strain gradually decreases with an increase in the
nominal strain-rate. For a ®xed value of _c0, the
instability strain decreases with an increase in
the value of B1, a decrease in the value of a0, and
an increase in the value of k0.

5. Shear band spacing

The three roots of the spectral Eq. (11) are
functions of the wave number n and the time t0 or
the average strain c0 when the homogeneous so-
lution is perturbed. In deriving Eq. (14) and hence
the instability criterion (18) the time t0 was kept
®xed. Numerical results presented above give the
minimum value, c0

i , of the average shear strain
when the homogeneous solution if perturbed will
become unstable. The dependence of the maxi-
mum growth rate, �gm, of the perturbation on t0 is
now investigated, and roots of Eq. (11) are found.
For the function f given by Eq. (20) and values of
material parameters given in (24), Fig. 6 depicts,

for c0 � 0:23; 0:78; 1:22 and 1:55, the normalized
dominant growth rate of the perturbation, �gm= _c0,
as a function of the wave number n. The dominant
growth rate corresponds to the root of Eq. (11)
with the maximum real part. For each value of c0,
the dominant growth rate increases with an in-
crease in the wave number, reaches a maximum
value and then very slowly decreases. Henceforth,
the maximum dominant growth rate at time t0 for
the perturbations is called the critical growth rate
at time t0 and the corresponding wavelength the
critical wavelength. For the nominal strain-rates of
104=s, Fig. 7(a) exhibits the critical growth rate as
a function of the average strain when the pertur-
bation is introduced. Also included in the ®gure is
a plot of g�m as given by Eq. (16) vs. c0. For a ®xed
c0; g�m slightly exceeds gm as it should. The critical
growth rate is maximum at c0 ' 0:5. From the plot
of the critical wavelength vs. the nominal shear
strain c0 given in Fig. 7(b), one concludes that the
critical wavelength ®rst decreases sharply with an
increase in c0, reaches a minimum value and then
increases very slowly. The minimum value of the
critical wavelength depends strongly on the nom-
inal strain-rate but occurs at the same value of c0.

It was postulated in [5] that the wavelength of
the dominant instability mode with the maximum
growth rate at time t0 determines the shear band
spacing, Ls. That is,

Ls � 2p=nm�tm
0 �; �25�

where tm
0 corresponds to the time when �gm�t0� is

maximum. In [4], a power-law type strain-hard-
ening material is considered. It was found that

Ls � inf
t0 P 0
�2p=nm�t0�� �26�

gives essentially the same value as Eq. (25).
However, it was found in [6] that the values of Ls

given by Eqs. (25) and (26) di�er noticeably when
thermal softening of the material is modeled by an
a�ne function of the temperature rise. Results
presented below are with the de®nition (25) of the
shear band spacing, and are for a layer of in®nite
thickness. Thus, the e�ect of boundary conditions
on the shear band spacing has been neglected. This
e�ect has been estimated in [4] to be Ls=2H , where
2H is the thickness of the layer. It is evident from

Fig. 6. Normalized dominant growth rate vs. wave number for

shear strain at instants of perturbing the homogeneous solution.
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Figs. 7(a) and (b) that the critical growth rate is
maximum at c0 ' 0:5 and the critical wavelength is
minimum at about the same value of the nominal
strain. Thus for the class of materials modeled by
Eqs. (3)±(5) and (20), de®nitions (25) and (26) of
the shear band spacing give essentially the same
value of Ls. Note that the value of the shear strain
corresponding to the shear band spacing is con-
siderably higher than the values of the instability
strain plotted in Fig. 2(a). Figs. 8(a)±(c) depict the

Fig. 8. Shear strain at shear band spacing vs. (a) initial dislo-

cation density, (b) initial microstructural interaction parameter,

and (c) initial thermal activation parameter.

Fig. 7. Dependence on the average shear strain when the ho-

mogeneous solution is perturbed of (a) normalized critical

growth rate and (b) critical wave length.
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dependence of the shear strain _c0s � _c0tm
0 corre-

sponding to the shear band spacing upon the ini-
tial (at time zero) dislocation density k0, the initial
microstructure interaction parameter a0 and the
initial thermal activation parameter B1. The nom-
inal strain c0s corresponding to the shear band
spacing monotonically decreases with an increase
in the values of B1 and k0. However, it gradually
increases with an increase in the value of a0. The
dependence of the value of c0s on k0 is much less
predominant than that on B1 and a0. Figs. 9(a)±(c)
evince the variation of the shear band spacing and
the nondimensionalized maximum growth rate
with B1; k0 and a0. Out of these three microstruc-
tural parameters considered, only the initial mi-
crostructural interaction parameter has a
noticeable e�ect on the value of the maximum
growth rate of the in®nitesimal perturbations. The
shear band spacing decreases nearly a�nely from
1.54 to 1.40 mm as k0 is increased from 0 to
1012=m2, and it decreases from about 2 to 1 mm as
a0 is increased from 1 to 10. However, the shear
band spacing gradually increases with an increase
in the values of B1.

In an explosively loaded stainless steel cylinder
[19], the strain-rate within a shear band was esti-
mated to be 104=s, and measured shear band
spacing equalled about 1 mm. Our computed val-
ues are close to the measured value. Note that the
values of material parameters listed in (24) are for
a typical steel and not necessarily for the steel
tested in [19].

6. E�ect of dislocation drag

Eq. (4) has been modi®ed in [9] to the form

s1 � B1eÿ�b1ÿb2 ln _c�T

1ÿ C _c
b2s1

� �b2T ; �27�

which accounts for the dislocation drag in their
thermally activated dislocation model. The con-
stant C in Eq. (27) describes the dislocation drag.
For a BCC metal, B1 is a constant and it is pro-
portional to c1=2 for a FCC metal. Fig. 10(a) de-
picts the shear stress vs. the shear strain curves for
four values of C; values of other material param-

Fig. 9. Normalized maximum growth rate and shear band

spacing vs. (a) initial microstructural interaction parameter,

(b) initial dislocation density, and (c) initial thermal activation

parameter.
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eters are given in Eq. (24). These plots reveal that
the e�ect of increasing C is similar to that of en-
hancing the nominal strain-rate. That is, for ®xed
values of the shear strain and the shear strain-rate,
the stress required to plastically deform the body
increases with an increase in the value of C. The
e�ect of the dislocation drag on the shear band
spacing and the maximum growth rate of the
perturbation are exhibited in Fig. 10(b). The shear
band spacing increases monotonically and the
maximum growth rate decreases with an increase
in the value of C from 0 to 5 Pa s/K. The computed

value of the shear band spacing is close to the
experimentally observed value.

7. Conclusions

Following the work of [10,12] the shear stress
has been expressed as the sum of two parts, one
due to thermally activated dislocation interactions
and the other described by the history of the
plastic deformation through an internal variable
identi®ed as the total dislocation density. A ho-
mogeneous solution of equations governing ther-
momechanical deformations of the body deformed
in simple shear is perturbed at time t0 by an in-
®nitesimal amount. The spectral equation for the
growth rate at time t0 of these perturbations is
deduced, and the wavelength nm�t0� corresponding
to the maximum growth rate at time t0 is found.
An instability criterion that ensures the growth of
the superimposed in®nitesimal perturbations is
derived. Also, an expression for the upper bound
of the growth rate of the perturbations is obtained.
The dependence of the nominal strain at the onset
of material instability and of that corresponding to
the shear band spacing upon various microstruc-
tural parameters are exhibited.

It is found that results computed with the pro-
posed micromechanics model are qualitatively
similar to those obtained with a phenomenological
constitutive relation. The critical strain de®ned as
the minimum average shear strain at which a ho-
mogeneous solution if perturbed becomes unstable
equals that at which the shear stress attains its
maximum value. The shear band spacing decreases
with an increase in the value of the initial dislo-
cation density and the initial microstructure in-
teraction parameter, but increases with an increase
in the value of the initial thermal activation pa-
rameter. The computed shear band spacing is
found to be close to the measured value of 1.0 mm
in a steel.
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