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Abstract

Assuming that the disc material can be modeled either as Mooney–Rivlin or as Hookean and the steel ring enclosing

the disc as Hookean, the energy release rates as a function of the crack length are evaluated and compared. Two

loadings are considered––one in which the surface of the star shape hole in the disc is loaded by a uniform pressure and

the other in which the temperature of the composite body is uniformly raised. It is found that the linear and the

nonlinear analyses give qualitatively similar results for the two loadings. For each load, the energy release rate increases

with an increase in the starter crack length, reaches a maximum value and then decreases gradually.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A common problem in industry is to design a
part based on the test data for a simple loading
condition such as an uniaxial tension test or a
torsion test. Whereas test data from a tension test
suffices to determine uniquely the two material
parameters for an isotropic linear elastic material,
it is usually insufficient for the determination of
the constitutive relation for a nonlinear elastic
material. Here such a problem for an epoxy is
analyzed. Assuming that the epoxy can be mod-
eled as a Mooney–Rivlin material, values of the
two material parameters from the uniaxial tension

test data are found, and then used to compute the
energy release rate as a function of the starter
crack length in a circular polymeric disc enclosed
in a thin steel ring and having a star shaped hole
with six symmetrical leaflets at its center. Two
loadings, namely, a uniform pressure on the sur-
face of the hole and a uniform temperature rise of
the composite body are considered. The steel ring
is modeled as a Hookean material. Computed re-
sults are compared with those obtained by mod-
eling the epoxy as a Hookean material. It is found
that for both loadings and for each one of the 12
crack lengths considered, the analysis of the non-
linear problem gives a smaller value of the energy
release rate than that for the linear problem. Re-
sults for the Hookean material vary significantly
with values of Poisson’s ratio in the range 0.49–
0.4999.
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Since a structure has numerous cracks of vary-
ing lengths, this type of analysis will help estimate
its useful life.
Many investigations [1–6] on crack tip fields

have considered linear strain–displacement rela-
tions but nonlinear stress–strain ones. The em-
phasis has been to derive a path independent
integral whose value is a measure of deformation
near a crack tip. The often used J-integral was
given in [2] and it was stated that this is a special
case of the energy momentum tensor introduced in
[1]. The energy momentum tensor characterizes
generalized forces of dislocations in an elastic field.
It is shown in [7] that the energy momentum tensor
appropriate for finding the force on a disclination
in a nematic liquid crystal is, to within an unim-
portant hydrostatic pressure, the same as the
Ericksen stress tensor [8]. This implies that the so-
called configurational force on a disclination in a
nematic liquid crystal is in fact a real force exerted
on the core of the disclination by the surrounding
medium; a similar result is proved in [9] for a non-
linear hyperelastic material. For a straight crack
propagating at a uniform speed in a linear or a
nonlinear elastic material, a path independent in-
tegral was derived in [4] from the balance of total
energy which for a mechanical problem is also the
first law of thermodynamics. It was shown that this
path independent integral equals the energy release
rate. Whereas the work employed a nonlinear
stress–strain relation, strains were linearly related
to displacement gradients. It should be mentioned
that path independent integrals were used by Gun-
ter in 1934 although not in the same context.
The work reported in [10] seems to be the first

to analyze the problem within the framework of
nonlinear elasticity for a neo-Hookean material.
The problem of a crack in an infinite, thin and
incompressible sheet subjected to biaxial tension
at infinity was studied by the method of successive
approximations which required that deformations
be large throughout the entire sheet. An asymp-
totic plane strain analysis [11,12] of a symmet-
rically loaded traction free crack in a slab of
compressible hyperelastic material showed that the
singular field near the crack tip depends strongly
on the behavior of the stored energy at large
strains. It has been shown [13] that for a general-

ized Mooney–Rivlin material, the crack opens up
in the neighborhood of its tip even if the applied
load is antisymmetric with respect to the crack
plane. The nonexistence of an antisymmetric mode
due to the nonlinearity of the global crack prob-
lems is also exhibited in [13]. An asymptotic
analysis of the plane deformation crack problem
for compressible rubberlike materials with Ogden–
Ball stored energy function that satisfies the poly-
convexity and certain growth conditions was
performed in [14]. It showed that the degree of
singularity and the leading terms of the local de-
formation field were exactly the same as those
obtained in [11,12] even though the constitutive
relations in the two studies were different. For the
Ogden–Ball materials the opening angle between
the crack faces becomes 180� at the crack tip. The
coefficient of the canonical field, which is called
the stress intensity factor, can be found only after
the global crack problem has been solved.
Mode-I and mixed mode deformations of a

crack in a homogeneous sheet made of a general-
ized neo-Hookean material, analyzed in [15],
showed that there exists more than one singular
term and the leading singularity is stronger than
that predicted by the linearized theory. Whereas
these studies considered traction free crack sur-
faces, the effect of nonconservative surface trac-
tions applied to the crack faces on the energy
release rate for two-dimensional problems was
scrutinized in [16]. This work discussed the modi-
fication to be made in the usual expression for the
energy release rate and also demonstrated that the
energy release rate depends upon the constitutive
relation used to model the material response. For
the problem studied here, numerical solutions in-
dicate that the orders of singularity for the linear
and the nonlinear analyses are the same. At a point
near the crack tip, the normal strains predicted by
the two analyses are nearly the same but the shear
strains are different.

2. Formulation of the problem

Fig. 1 shows a cross-section of the composite
cylindrical body whose length is very large as
compared to its diameter. Thus a plane strain state
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of deformation is assumed to prevail in the body.
The star shaped hole at the center has six sym-
metrically located leaflets; dimensions of different
parts are shown in Fig. 1. The epoxy and the steel
casing are modeled as isotropic and homogeneous
materials. Initially the body is stress free and
at a uniform temperature. Deformations of the
body under two types of loads, namely, a uniform
pressure on the inner surface of the hole and a
uniform temperature rise of the entire body are
studied. In each case, the outer surface of the steel
ring is taken to be traction free. Because of the
symmetry of the geometry and the loading condi-
tions, deformations of only a 30� sector of the
body are investigated. Points on the bounding
surfaces h ¼ 0� and h ¼ 30� are constrained to
move radially, and tangential tractions on these
surfaces are set equal to zero. The epoxy disc is
assumed to be perfectly bonded to the steel ring so
that displacements and surface tractions are con-
tinuous across their common interface.
The referential description of motion is em-

ployed to describe deformations of the body, and
analyze the static problem. Displacements of a
material point are found from the balance of linear

momentum and the moment of momentum subject
to the aforestated boundary conditions and the
following constitutive relations. Deformations of
the steel ring are assumed to be infinitesimal and
its isotropic material modeled by Hooke’s law with
Young’s modulus ¼ 29 Mpsi, Poisson’s ratio ¼
0.3, and the coefficient of thermal expansion ¼
6:5� 10�6/�F.
The epoxy is modeled either as a Mooney–

Rivlin material or as a Hookean material. For the
Mooney–Rivlin material

W ¼ C10ð�II1 � 3Þ þ C01ð�II2 � 3Þ þ
1

D1
ðJ el � 1Þ2; ð1Þ

whereW is the strain energy per unit volume in the
reference configuration; C10, C01, and D1 are tem-
perature dependent material parameters; �II1 and �II2
are the first and the second invariants of the de-
viatoric strain tensor, and are defined as

�II1 ¼ �kk21 þ �kk22 þ �kk23; �II2 ¼ 1=�kk21 þ 1=�kk
2
2 þ 1=�kk

2
3: ð2Þ

Here �kki ¼ J�1=3ki; J equals the determinant of the
deformation gradient and k1, k2, and k3 are prin-
cipal stretches. The shear modulus l0 and the bulk
modulus K0 at zero strain are given by

l0 ¼ 2ðC10 þ C01Þ; K0 ¼ 2=D1: ð3Þ
The elastic volume ratio, J el, is related to J by

J el ¼ J=ð1þ aDT Þ3; ð4Þ
where a is the coefficient of thermal expansion and
DT the change in temperature. For purely me-
chanical deformations, DT ¼ 0, J el ¼ J , and D1 is
assigned a very large value as compared to C10 and
C01 so that deformations are essentially isochoric.
Values of the two material parameters in the

Mooney–Rivlin relation found from the uniaxial
test data by using the finite element code ABA-
QUS are

C10 ¼ 1550 psi; C01 ¼ �811:1 psi: ð5Þ
ABAQUS determines material constants through
a least-squares-fit procedure which minimizes the
relative error in the nominal stress. For n nominal
axial stress vs. nominal axial strain data pairs, the
error

Er ¼
Xn

i¼1
ð1� T comi =T testi Þ2 ð6Þ

Fig. 1. A cross-section of the composite cylindrical body whose

plane strain deformations are studied.
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is minimized. Here T testi is a stress value from the
test data, and T comi is the corresponding computed
value. Computed values of the axial component of
the first Piola–Kirchhoff stress tensor vs. the nom-
inal axial strain which equals the change in length/
length are compared with the experimental data in
Fig. 2. It is clear that the two sets of data are very
close to each other implying thereby that values
given in (5) of C10 and C01 are very good. Com-
parisons of computed results with test data for
different loading configurations are needed to en-
sure that the Mooney–Rivlin relation models well
the epoxy material with values (5) of C10 and C01.
In order to delineate effects of material

and geometric nonlinearities, the epoxy was also
modeled as Hookean with Poisson’s ratio varying
from 0.49 to 0.4999 and the shear modulus equal
to 1477.8 psi. As Poisson’s ratio approaches 0.5,
the material becomes essentially incompressible
and is incompressible for Poisson’s ratio equal
to 0.5. As shown below, the energy release rate
strongly depends upon Poisson’s ratio for the
Hookean material. The axial stress vs. the axial
strain curve for the Hookean material is also de-
picted in Fig. 2. For both linear and nonlinear
analyses, the coefficient of thermal expansion for
the epoxy material equaled 5:6� 10�5/�F which is
a little less than nine times that for the steel.
With the goal of ascertaining the failure char-

acteristics of the epoxy, the energy release rate as a

function of the initial crack length was determined.
When the inner surface of the hole and the surface
of the starter crack aligned with the x1-axis are
loaded by a uniform pressure q, the energy release
rate G, for a linear elastic material is given by

G ¼
Z

C
Wn1

�
� Tijnj

oui
ox1

ds
�
þ
Z

Cc

q
ou2
ox1

dx1; ð7Þ

where W is the strain energy density, u the dis-
placement of a point, C a closed curve enclosing the
crack tip, n the outward unit normal to C, Tij the
stress tensor, a repeated index implies summation
over the range of the index, and Cc the two crack
faces. Note that the last term on the right-hand side
of (7) represents the work done by the pressure on
the crack surfaces. For the thermal load, there is no
surface traction on the crack surface and this term
makes no contribution to the value of G. For a
homogeneous hyperelastic material, Tij equals the
first Piola–Kirchhoff stress tensor.
For the linear elastic problem, the value of the

energy release rate will vary approximately as the
reciprocal of Young’s modulus for the epoxy be-
cause the epoxy disc is enclosed in a steel ring
which will apply different tractions on the outer
surface of the epoxy disc when its Young’s mod-
ulus is varied. Numerical experiments indicated
that G / 1=E is valid for the present problem since
the steel ring is located far from the crack tip.
However, no such conclusion can be drawn for the
Mooney–Rivlin material. Furthermore, for the
Hookean material, G / q2, and this proportional-
ity relation is not valid for the Mooney–Rivlin
material. Values of material parameters for five
nonlinear materials from the same tension test
data were found in [16] and the variation of the
computed value of the energy release rate with the
pressure q on the crack faces was found to be
different for these materials.

3. Computation and discussion of results

Because of the complicated geometry and the
nonlinearities considered, the problem was ana-
lyzed by the finite element method with the com-
mercial code ABAQUS 6.11. The region in the 30�

Fig. 2. A comparison of the computed and the experimental

axial nominal stress––axial engineering strain curves for the

disk material.
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sector was divided into 4824 CPE8H (8-node ele-
ment with biquadratic interpolation for displace-
ments and linear interpolation for the pressure
field) quadrilateral elements with smaller elements
near the crack tip. Since the order of singularity at
the crack tip for the Mooney–Rivlin material is
not well established, the node on a side of an ac-
tual element was located at the midpoint of the
side. As shown in Fig. 3, the element size increased

gradually with the distance from the crack tip.
Two different finite element meshes––one with
2412 elements and the other with 4824 elements––
were used to decipher the effect of discretization of
the domain on the computed results. No appre-
ciable difference between the two sets of results
was found; results reported herein are with the
mesh of 4824 elements. For a starter crack of
length 1 in., Fig. 4 exhibits the finite element mesh

Fig. 3. A finite element mesh with 4824 elements used for the analysis of the problem.

Fig. 4. Finite element mesh around the crack tip, and five contours used to compute the energy release rate.
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around the crack tip and five contours used to
compute the energy release rate. These contours
are comprised of boundaries of consecutive ele-
ments in the neighborhood of the crack tip; the
first contour starts from the edge of the first ele-
ment with one node at the crack tip, the second
one from the edge of the second element, etc.
Distances from the crack tip along the positive x1-
axis of these five contours equal 0.039, 0.081,
0.127, 0.178 and 0.232 in. respectively.

3.1. Effect of Poisson’s ratio

For 1000 psi pressure applied on the surface of
the hole and faces of 1-in. long crack, Fig. 5 de-
picts the dependence of the energy release rate
upon Poisson’s ratio, m, of the disc modeled as a
Hookean material. It is clear that the value of the
energy release rate depends strongly upon m. A
close examination of the computed stresses and
strains indicated that the hydrostatic pressure,

p ¼ 2l0m
ð1� 2mÞ eii ð8Þ

varied noticeably when m was increased from 0.49
to 0.4999. In Eq. (8) eij is the infinitesimal strain
tensor. An increase in m decreases the compress-
ibility of the material which reduces significantly
the opening between the crack faces created by the

pressure acting on them. This is evident from the
deformed shapes of the crack face plotted in Fig.
6a for different values of m; note that the vertical
scale is much expanded. Vertical displacements in
the direction of the applied pressure of points on
the crack faces decrease with an increase in Pois-
son’s ratio. The curvature of the deformed crack
tip increases with an increase in Poisson’s ratio.
Higher values of the vertical displacement of
points on the crack face result in larger values of
the work done by the pressure q acting on the
crack face and increase noticeably the contribution
to the energy release rate made by the last term on
the right-hand side of Eq. (7).
For a temperature increase of 85 �F, values of

the energy release rate, plotted in Fig. 5, do not
vary much when m is increased from 0.490 to
0.4999 mainly because the last term on the right-
hand side of Eq. (7) makes null contribution to the
energy release rate.
Fig. 6b evinces the variation of the infinitesimal

shear strain exy ¼ e12 at points near the crack tip
and lying on the axis of the crack; the abcissa r
equals the distance of a point from the crack tip. It
is clear that Poisson’s ratio significantly influences
the distribution of the shear strain at points in the
vicinity of the crack tip and the order of singularity
increases with a decrease in Poisson’s ratio from
0.4999 to 0.49.
Variations of the values of the the energy re-

lease rate with the length of the starter crack for
Poisson’s ratio ¼ 0.49, 0.495, 0.499 and 0.4999 are
depicted in Fig. 6c. Results are qualitatively simi-
lar in that for every length of the starter crack, the
value of the energy release rate diminishes with an
increase in Poisson’s ratio.
Recalling that the Mooney–Rivlin material is

incompressible, m is henceforth set equal to 0.4999
for the Hookean material in comparing results of
linear and nonlinear analyses.

3.2. Pressure load

For an internal pressure of 1000 psi, Table 1
lists values of the energy release rate for different
starter crack lengths and the five contours. Except
for the case of the very short starter crack of length
0.05 in., the five values of the energy release rate

Fig. 5. For 1000 psi pressure and initial crack length of 1 in.,

dependence of the value of the energy release rate upon Pois-

son’s ratio, m. The dependence of the energy release rate upon m
is also shown for a thermal load of 85 �F.

170 R.C. Batra, H.K. Ching / Theoretical and Applied Fracture Mechanics 38 (2002) 165–175



are within 2.5% of each other implying that the
integral is path independent. Fig. 7 evinces for the
linear and the nonlinear analyses the dependence
of the energy release rate on the length of the
starter crack. In each case the energy release rate
initially increases with an increase in the crack
length, reaches a maximum value at a crack length
of about 1.0 in. for the linear analysis and about
0.8 in. for the nonlinear analysis and then gradu-
ally decreases with an increase in the crack length.
The two analyses give qualitatively similar results
and the linear analysis gives �20% higher value of
the the energy release rate. Note that in the non-
linear problem, the tangent modulus decreases
with an increase in the strain at a point and thus
the material exhibits softening behavior. Recall
that in the linear problem, G / 1=E, intuitively one

will expect that G for the nonlinear problem
should be higher than that for the linear problem.
However, such is not the case. Contributions for
the two cases to the energy release rate made
by the last term on the right-hand side of Eq. (7) are
the same since as shown in Fig. 6a the deformed
shapes of the crack face coincide with each other.
The difference in the values of the energy release
rate in the two cases must come from the first term
on the right-hand side of Eq. (7). In an attempt to
delineate the order of singularity at the crack tip,
for a 1-in. starter crack the variation with the
distance from the crack tip of the components
exxðExxÞ, eyyðEyyÞ and exyðExyÞ of the strain at points
on the x1-axis is plotted in Fig. 8. Here Eij are
components of the Green–St. Venant strain tensor
and differ from those of eij in quadratic terms in

Fig. 6. (a) Deformed shapes of the crack face for different values of Poisson’s ratio. (b) For Poisson’s ratio equal to 0.49, 0.495, 0.499

and 0.4999 variation with the distance from the crack tip of the infinitesimal shear strain exy . (c) For a pressure of 1000 psi, variation of
the energy release rate with the length of the starter crack for four values of Poisson’s ratio.
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the displacement gradients. It is clear that the
magnitude of each strain component at the crack
tip for the linear analysis is a little higher than that

for the nonlinear analysis. However, at points on
the x1-axis whose distance ahead of the crack tip is
more than 10% of the starter crack length, the two

Table 1

Values of the energy release rate computed with the five contours for an internal pressure of 1000 psi, and different starter crack lengths

Starter crack’s

length (in.)

Analysis type Contour

1 2 3 4 5

0.05 Linear 0.4166 0.4277 0.4266 0.4268 0.5479

Nonlinear 0.3563 0.3581 0.3606 0.3640 0.4099

0.1 Linear 0.8143 0.8262 0.8232 0.8234 0.8232

Nonlinear 0.6883 0.6788 0.6816 0.6897 0.6911

0.2 Linear 1.498 1.525 1.518 1.518 1.518

Nonlinear 1.209 1.166 1.163 1.175 1.182

0.4 Linear 2.490 2.529 2.518 2.519 2.519

Nonlinear 2.086 2.026 2.021 2.045 2.055

0.6 Linear 3.006 3.115 3.113 3.114 3.114

Nonlinear 2.415 2.354 2.350 2.371 2.381

0.8 Linear 3.360 3.429 3.418 3.420 3.420

Nonlinear 2.761 2.640 2.616 2.636 2.642

1.0 Linear 3.423 3.549 3.546 3.546 3.547

Nonlinear 2.724 2.609 2.584 2.596 2.602

2.0 Linear 3.211 3.276 3.264 3.265 3.264

Nonlinear 2.704 2.593 2.560 2.569 2.568

4.0 Linear 2.354 2.384 2.374 2.375 2.375

Nonlinear 2.148 2.126 2.119 2.136 2.143

5.0 Linear 1.996 2.054 2.045 2.045 2.045

Nonlinear 1.731 1.704 1.689 1.696 1.697

10.0 Linear 1.063 1.091 1.086 1.086 1.086

Nonlinear 0.9492 0.9506 0.9458 0.9500 0.9513

15.0 Linear 0.5633 0.5801 0.5774 0.5774 0.5774

Nonlinear 0.5363 0.5387 0.5334 0.5332 0.5321

Fig. 7. Variation of the energy release rate with the crack

length when the disk material is modeled either as a Hookean

material or as a Mooney–Rivlin material.

Fig. 8. For the linear and the nonlinear analyses, variation with

the distance from the crack tip of strain components at points

directly ahead of the starter crack of length 1 in.
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analyses give nearly the same values of strains. As
exhibited in Fig. 6a, the crack tip is blunted for the
two analyses. For a starter crack of length 1 in.,
the maximum in-plane principal stress induced at a
point near the crack tip is compressive and its
magnitude equals 219.96 and 261.06 psi respec-
tively for the linear and the nonlinear analyses; the
corresponding values of the maximum in-plane
principal strains are 0.1231 and 0.1229. It is clear
that the limit of validity of infinitesimal deforma-
tions has been exceeded.
Fig. 9 exhibits contours of the maximum prin-

cipal strain in a small region around the crack tip
for the two analyses. In each case, only a small
region around the crack tip is intensely deformed,
and contours of the principal strain look alike.
Contour plots of the maximum in-plane principal
stress for the two analyses are also very similar to
each other and are therefore omitted.
For a starter crack of length 1 in., the variation

of the value of the energy release rate with the
pressure q applied on the surfaces of the hole and
the crack is plotted in Fig. 10. One can verify that
for the Hookean material the value of the energy
release rate is proportional to q2. Plots of Fig. 10
reveal that the value of the energy release rate for
the Mooney–Rivlin material is smaller than that
for the Hookean material and the difference be-

tween the two increases with an increase in the
applied pressure q.

3.3. Thermal load

The temperature of the disk and the steel ring
was increased by 85� F, and the coefficients of
thermal expansion for the epoxy and the steel were
set equal to 5:6� 10�5/�F and 6:5� 10�6/�F re-
spectively. For both linear and nonlinear analyses,
values of the energy release rate for each one of the
five contours depicted in Fig. 4 were found to be
essentially the same. Fig. 11 shows the variation of

Fig. 9. Contours of the in-plane maximum principal strain in a

small region around the crack tip of 1 in. long crack and applied

pressure of 1000 psi.

Fig. 10. For a crack of length 1 in., variation of the value of the

energy release rate with the applied pressure q for the linear and

the nonlinear analyses.

Fig. 11. Variation of the energy release rate with the crack

length for the thermal loading.
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the energy release rate with the crack length for the
two analyses. The two sets of results agree quali-
tatively and quantitatively also. For the two ana-
lyses the maximum value of the energy release rate
occurs for a crack of length 1 in. after which it
gradually decreases with an increase in the crack
length. As for the thermal loading, the energy re-
lease rate for the nonlinear analysis is smaller than
that for the linear analysis but the difference be-
tween the two is perceptible only when the length
of the starter crack is less than 4 in. For the two
analyses, the variation of the energy release rate
with the temperature rise is parabolic. For a starter
crack of length 1 in. and 85 � F temperature rise,
the variation with the distance from the crack tip
of different components of strain at points ahead
of the crack tip and located on the x1-axis is
plotted in Fig. 12. Whereas for the linear problem,
all components of the in-plane strain tensor ex-
hibit a singular behavior near the crack tip, for the
nonlinear analysis Exy and Eyy appear to be sin-
gular but Exy is not. As for the pressure loading,
large values of strain are confined to points whose
distance from the crack tip is <10% of the length
of the starter crack. The maximum value of exy is
nearly 3.5 times that of Exy . However, at a point
near the crack tip the magnitude of Exx is about 1.5
times that of exx and values of Eyy and eyy are the

same. For a crack of length 1 in., the maximum in-
plane principal stresses in the epoxy for the linear
and the nonlinear analyses equal 2369 and 2276 psi
respectively, and the corresponding values of the
maximum in-plane principal strains are 0.367 and
0.4156. It is clear that the range of validity of the
linear theory has been exceeded.

4. Conclusions

The variation of the energy release rate with the
crack length for an epoxy disk with a star shape
hole at its center and enclosed in a thin circular
steel ring has been studied. Two loadings, namely
an internal pressure of 1000 psi and a temperature
increase of 85 �F, are considered. The epoxy is
modeled either as a Mooney–Rivlin material or as
a Hookean material. The value of the energy re-
lease rate for a Hookean material strongly depends
upon the value assigned to Poisson’s ratio, m. It is
found that for m ¼ 0:4999 the variation of com-
puted values of the energy release rate with the
crack length obtained from the linear and the
nonlinear analyses agree qualitatively; the value
from the linear analysis is about 20% higher than
that from the nonlinear analysis. Thus the design
based on the linear analysis is conservative. The
maximum value of the energy release rate for the
linear analysis occurs for a crack of length 1.0 in.
but for a crack length of 0.8 in. for the nonlinear
analysis. For the thermal load, the two analyses
give about the same value of the energy release rate
and the maximum value of the energy release rate
occurs for a crack length of nearly 1 in.
Even for the linear analysis, values of the energy

release rate for the combined thermomechanical
load cannot be obtained by adding the energy re-
lease rates for the corresponding mechanical and
thermal loads since the energy release rate is pro-
portional to the square of the applied pressure and
to the square of the temperature change.
It is important that the epoxy be characterized

more carefully with the test data from different
types of experiments. For the present problem, the
linear analysis gives qualitatively correct informa-
tion and provides a reasonably accurate value of
the critical crack length for which the energy re-

Fig. 12. For the linear and the nonlinear analyses, variation

with the distance from the crack tip of strain components at

points on the surface of the starter crack of length 1 in. and for

a uniform temperature rise of 85 �F.
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lease rate is maximum. However, this is not true in
general since for the simple shearing problem the
linear analysis fails to predict the Poynting effect
whereas the nonlinear analysis with a Mooney–
Rivlin constitutive relation predicts it. Also, results
for the nonlinear analysis will depend upon the
constitutive relation used to model the material
response since it strongly influences the deforma-
tion fields near the crack tip.
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