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We study the morphological stability of a propagating planar interphase boundary in a
thennoplastic material defonned in anti plane shear. The plane interphase boundary is
found to be stable if Xo/ (4 pc) > vi where c is the specifil; heat per unit volume; p is
the mass density; Vo is the propagatiOn speed,. and Xo is a function of the material
moduli and the state of defonnation of the body.

The propagation of interphase boundaries in one- and two-dimensional deforma-
tions of solids that can undergo phase transformations has been studied by,
amongst others, James [12], Hutchinson and Neale [11], Coleman [6], Fager and
Bassani [7], and Tugcu and Neale [20, 21]. Many of these studies have been
motivated by the experimental observations on the cold-drawing of polymer fibers
and membranes. These works have examined the existence and properties of a
steady-state solution characterized by a steadily propagating interphase boundary
that divides the body into two uniform or nearly uniform deformed regions. This
phenomenon is somewhat similar to the directional solidification process studied
by Mullins and Sekerka [18], Langer [16], and Godreche [10] where a moving planar
interface separates the solid and liquid regions. For this case a planar interface can
become morphologically unstable and then develop into a cellular or dendritic
pattern. We note that detailed experimental observations on the morphology of a
propagating interphase boundary in two-dimensional deformations of solids under-
going phase transformations has not been reported. Here we use Mullins and
Sekerka's method to study analytically the morphological stability of a planar
propagating interphase boundary in phase-transforming thermoplastic solids de-
formed in antiplane shear. For a thermoelastic solid deformed in antiplane shear,
Fried [9] has investigated the relationship between the morphological stability of
the planar interface and the "kinetic functions" proposed by Knowles [15] and
Abeyaratne and Knowles [1].
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FORMULAllON OF THE PROBLEM

We consider antiplane shear deformations in the {Xl' xJ-plane of a rigid-plastic
and nonheat conducting material whose behavior can be described by the J2-defor-
mation theory. We confine ourselves to the geometrically linearized case; there-
fore, the effect of change of configuration during phase transition is neglected. We
also ignore the effect of thermal expansion and unloading of a material point. The
J 2-deformation theory for thermoplastic materials has been used in the analysis of

many problems (e.g., see Boley and Weiner [5], Baines [4], and Kachanov [14)). In it
the stress-strain relation is given by

Sjj = (2/3)(ue/Ee)Ejj

where Sjj and Ejj respectively, are the components of the deviatoric stress tensor
and the deviatoric infinitesimal strain tensor and

(Fe = (2sjjSjj/3)1/2 and

are the effective stress and the effective strain, respectively. It can be verified that
for the J2-deformation theory there exists a plastic work function W(Ee) such that

s.. = aw

/ a~..IJ IJ

For the antiplane shear deformations in this article, let the nonzero displacement

component along the vertical direction be W(Xl' X2, I). From the linearized strain-
displacement equations, two nonzero components of the strain tensor Ejj are

E13 = w.l/2 E23 = w.2/2 (1)

where W,j = aw / aXj" Here we assume that a potential function W(E13' E23, (}) per

unit volume exists and is of a separable form

W(E13' E23, 8) =F(ll)I(8) (2)

where (j= T- To, To is a suitably chosen reference value of the temperature T,
and n is proportional to the effective strain ~e and is defined as

n= (E2+ 2) 1/2

13 E23 (3)

for convenience. We note that several authors, e.g., see Litonski [17] and Johnson
and Cook [13] have assumed that the flaw stress can be expressed as a product of
three functions: one of temperature alone, another of effective plastic strain-rate,
and the third one of effective plastic strain. In order that the m~teTi~1 eyhihit
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thermal softening, we require that (i) [(0) = 1 and 0 < a positive number ~j(8) ~ 1
for the range of 8 ~ 0 to be discussed herein, and (ii) ['(8) < O. The function F(')
is assumed to be a nonlinear function of II such that

1 dF
f(n) =F.n(n)/2 = 2m (4)

is characterized by the "rising-falling-rising" curve as shown in Figure 1. It follows
from Eq. (2) that components 0"13 and 0"23 of the stress tensor O"jj are given by

0"13 = (1/2)aW / aE13 = !(II)I«(})E13/II
(5)

0"23 = (1/2)aW / aE23 = !(II)I(fJ)E23/II

respectively; thus the effective stress is proportional to !(II)I(O). Therefore, by
using the uniaxial stress-strain curve shown in Figure 1, a relation between the
effective stress and the effective strain at any given temperature can be derived.

For the problem being studied, the balance of linear momentum and the
balance of internal energy are equivalent to the equations

(6)+ 0"23.2pw =0"",

:7)cO,t = CT13W.lt + CT23W,2t

respectively, where p is the constant mass density and c is the constant specific
heat per unit volume. In Eq. (7) we have assumed that all of the plastic working,
rather than 90% to 95% of it as asserted by Farren and Taylor [8] and Suli-

Figure 1. The uniaxial constitutive fun"tinn fm)
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joadikusumo and Dillon [19] is converted into heating. From Eqs. (6) and (7), we
obtain the balance of total energy

(8)(cO + pw~t/2),t = (U13W,t),l + (U23W,t),2

and recalling Eq. (5), we write Eq. (7) as

c/*(8l, =F (9)

where

/*(0) = i6/«()-1 d(
0

Obviously I*«(J) is an increasing function of (J.
Since some of the physical quantities will be discontinuous across the interface,

we need jump conditions across it. Let the interface propagate at the local speed V
and its local normal vector be n (directed in the direction of propagation); the jump
conditions across the interface are

[w]=o 1)

-p~[W.1] = [0'].0

c[/*«(J)] = [F]

-~[c(J+ p(w.t)2/2] = [w.ta]-n (14)

where [ . ] = (.)+ -( .)- denotes the jump, (J' = {U13' U23}' and ~ = V'n ~ 0 is the

normal component of the velocity V of propagation. The jump condition (13) is
obtained from Eq. (9), and others are standard ones; for example, see Abeyaratne
and Knowles [2]. Whereas Fried [9] used "kinetic relations," we employ jump
conditions (12) to (14) derived from the conservation laws.

A STEADY-STATE SOLUTION

We examine the steady-state solution for which the body is divided into regions I
and II, as shown in Figure 2, such that the strain and temperature are uniform in
these regions and the planar interface Xl = Vol between them is moving in the
xl-direction at a constant velocity Vo. Thus the displacement and temperature are
given by

11= (J, W =E1z for z < 0
(15)

(J = (J2 w = E2z for z > 0

whf'.rf'. z = x. - V nt and 8; and Ei (i = ,2) are constants with (J2 < (Jl and £2 < £1
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Figure 2. Propagating interface.

The jump conditions (12) to (14) reduce to

pVo2(E1-E2) =!(E1)I(Ol) -!(E2)I(O2)

c(/*(91) -/*(92» =F(Et) -F(E2) (17)

c(81 - 82) + pVo2(E;-Ei)/2 = [(E1)E1/(81) - [(E2)E2/(fJ2)

It is seen that the deformation and temperature are coupled with each other.

ANALYSIS OF THE MORPHOLOGICAL STABILITY OF mE
INTERFACE

Governing Equations

Following Mullins and Sekerka's method (Mullins and Sekerka [18], Langer [16],
and Godreche [10]) we consider a perturbation of the interlace geometry in the
reference frame {z; X2; I}. Let the interlace geometry be given an infinitesimal
perturbation

Z=Z*(X2,t) = 8 cos kx2e"'t

where {) is a small number. The steady-state solution (15) is replaced by

() = (}1 + Ul(Z }COS kx2e"'t

(20)
w = E1z + Vl(Z)COS kx2e"" for Z < Z*(X2' t)

£) = £)2 + U2(Z)COS kx2e"'t

(21)

W =E2z + V2(Z)COS h2ewt for Z >Z*(X2,t)
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where Ul' Vl and uz, Vz are of order 8. The linearized perturbed equations
obtained from Eqs. (6) and (7) are

4p(w,tt - 2Vow,zt + VO2W,ZZ) - W,nnW,zz - 2W,nw,zz/E = 2W,9n(J,Z

W,n(W,zt - VOW,zz) = 2c(8,t - Vo8,z)

where U;:n (U;:8n and U;:nn) denotes the constant value of u;:W (U;:~h and u;:Wn)
at the uniform state ()= (}}, E =E}, and w =E}z in region I or u;:~) (U;:<;h and
U;:~)n) at the uniform state ()= (}2, E=E2, and w=E2z in region II. Equations
(22) and (23) are coupled unless U;:n = 0 or U;:n8 = o.

In order to find a solution of Eqs. (22) and (23), we first examine their
eigensolutions. Let

Ut(Z) ,.., A"e"z
Vt(Z) -BAeAZ for Z <Z*(X2' t

where AA and BA are the A-dependent coefficients; then Eqs. (22) and (23) yield

{4p(W2 - 2wV; A + V;2A2) - W(l) A2 + 2W(1)k2 / E }B = 2W(1) AA0 0 ,nn ,n 1 A ,on,

2c(w- VoA)A" = W,W(w- VoA)AB"

and three eigenvalues A are solutions of

c{4p( W2 2 (J)V; >.. + V;2>..2) - W(l) >..2 + 2W(1)k2 j E }= W(l)W(l) >..20 0 ,nn ,n 1 ,n ,9n

(tJ = VoA.

and the ratio of coefficients AA to BA of the eigensolution is given by either Eq
(25) or (26).

Equations (27) give

-4cpwVo::t v'4CpW2I~1) + 2cW,Wk2I(1) IE1 )/I(1)A= (28)

where

I = Io - 4cpVO2 (29)

Io = cW,nn + W,nW,6n (30)

and the superscript (1) on Io and I signifies their values in region Similarly, let

u?(z) -A e-7/Z
.. v2(z)-B e-"z" (31)forz>z*(X2,t)
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from Eqs. (22) and (23) we obtain

{4p(llJ2 + 2llJVol1 + VO~2 - W(2) ...2 + 2W(2)k2 IE }B =,nn., ,n 2 1/ 2W(2) 1}A (32)
,BU 1/

2c(w + Vo77)A1j = - W,W(w + Vo77)77B1j (33)

and three eigenvalues 11 are given by

C{4p(W2 + 2wJI; 11 + Jl;2...2) - W(2) ...2 + 2W(2)k2 j E0 0.' .UU., ,U 2 = W(2)W(2) 1]2
,II ,(ill

w+Vo11=Q

The ratio of coefficients A1j to B1j of the eigensolution is given by either Eq. (32)
or (33). Two roots of Eqs. (34)1 are

11 = (4cpwVo:t v'4CpW2I~2) + 2cW,Wk2I(2) /£2 }/I(2)

We note that there are six roots of eigenequations (27) and (34). Because boundary
conditions at infinity are not perturbed, the admissible perturbation must tend to
zero at infinity. Thus real parts of admissible roots must be positive. Then,
according to the Mullins and Sekerka method, it is essential for our present
problem that there be three and only three admissible roots of Eqs. (27) and (34)
with positive real parts such that the corresponding three unknown coefficients and
15 may be well-determined by the four interface jump conditions (11) to (14). We
assume that the roots p, r, and q exist and require that

Re(p) > 0 Re(r) > 0 Re(q) > 0

If the boundary conditions at infinity are also given, then the infinitesimal pertur-
bations and inequalities (36) are relaxed to

Re(p) ~ 0 Re(r)~O Re(q) ~ 0

and we shall have a more restrictive definition of stability because the set of
admissible perturbations is enlarged. We do not study this alternative.

Because of the assumption of infinitesimal deformations and infinitesimal
perturbations, the local velocity

v= Vn +Z*,(x".t)
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of the interface nearly equals its normal component ~. Thus, in the frame
{z, X2' I}, four jump conditions (11) to (14) at Z = Z*(X2' t) reduce to the following
four linear homogeneous equations

8(£1 -£2) + [V] = 0

4pC1JVo8(El -E2) + [(2pVO2 - W.~n/2)v.z] = [W.~9U]

Vo[ (EW.~n/2 - 2pVO2E + 2/oI(O»v,z]

= 2w8[/0/0(8)E] + Vo[ (2c -E~~9)U] + 2w[ (/0/(8) pVo2E)v]

[F,Onv.z] = 2c[u/IO«(J)]

where U =Ul,U2 and £=£1'£2 for regions I, II, respectively.
From the condition for the existence of a nonzero solution {8, u, v} we get an

expression for (J) and then examine the interlace stability.

Stability Conditions

We delineate all possible unstable cases; thus, the rest must be stable. For the
interlace to be unstable, Re(w) > O. Relations (27), (28), (34), and (35) imply that
there cannot be five or six admissible roots with positive real parts. If there are
four admissible roots, then, since there are four corresponding arbitrary coeffi-
cients, four jump conditions may always be satisfied by these four roots and 8 with
Re( w) > O. Therefore, the interlace will be unstable. In fact, this is the case when
one of the two values of I(i) in two distinct phases is negative, that is, when
I(l) < 0 and I(2) > O. However, this is not the case when I(2) > I(l) > 0; in other
words, the possibility of four admissible roots of Eqs. (27) and (34) with Re(w) > 0
is excluded by I(2) > I(l) > O. Henceforth we assume that I(2) > I(l).

For the general case when there are only three admissible roots of Eqs. (27),
(28), (34), and (35), the following are the only three possibilities for Re(w) > O.

Case 1. There is no admissible root of Eq. (34), and there are three admissible
roots of Eq. (27);

Case 2. There is one admissible root of Eq. (34), and two admissible roots of
Eq. (27);

Case 3. There are two admissible roots of Eq. (34) and just one admissible root
of Eq. (27).

Case 3 is impossible for real W2. Below we examine each one of these three
(,:I~f'.~-
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Case 1. Three roots p, r, q are given by Eqs. (28) and (27h and we have

Ul(Z) = aePz + IjIe'z + {3*eqz

Z <Z*(X2,t)Vt(Z) = a*ePZ + "'*e'Z + f3eQz

U2(Z) = 0 v2(z) = 0 Z>Z*(X2,t)

where a, /3, 1/1 are three unknown constants and a*, /3*, 1/1* are expressed in terms
of a, /3, 1/1 through Eqs. (25) and (26) as

{ - W(l) q 2 + 2W(1)k2 j E } /3 = 2W(1) q /3 *
,nn .n 1 ,on

(43)2ca = W,Wpa*

2cl/l = W,Wrl/l*

The four unknown constants 8, a, /3, '" will be determined by the four interface
conditions (38) to (41). Then, we get the following three equations for Vl,z' Ul' and
v,:

(2pVO2 - W,Wn/2)v1.z- W.W6Ul = 4pCtlVov

(W,Wn/2 - 2pvi)vt,z + 2pVow(Et +E2)Vt/Et + W,W8Ut = 0

W,WV1,z = 2CUl (46)

Since £1 * £2' we conclude from Eqs. (44) and (45) that

v, =0

and furthermore from Eq. (44) we obtain

(2 pV;2 - W(l) / 2)v = W(l) U0 .nn l,z ,n9 1 (4R)

Therefore I(I) * 0 is equivalent to

(49)VI,z = VI = UI = 0

or

a* + tf>* + {3= 0 pa* + rtJ>* + q fJ = 0a+cf>+fJ*=O

or, more explicitly,

W,W(r - p)a* + W,Wrf3 - 2cf3* = 0 (r- p)a* + (r - q){3 = 0
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It follows that

(52)Ib1)W2 = 2CVO2W,Wk2/E1

Therefore, for the existence of a solution with Re( (1J) > 0, we must have !,~l) > 0;
the corresponding roots given by Eqs. (28) and (27)2 are all possible admissibleroots if and only if !,(l) < 0 and !,(2) < o. Thus we conclude that when and onlywhen !,(l) < 0 and !,(2) < 0, there can exist a solution with (1J> 0, and then thesteady-state solution (15) with the interface z = 0 is unstable.

Case 2. We write the admissible roots as p, r, and q with

(JJ = VoP

r=

The general forms of admissible perturbations are

Vl(Z) = aePz + I/I*e'z Z <Z*(X2' t)Ul(Z) = a*ePz + l/Jerz

(54)
Z >Z*(X2,t)V2(Z) = {3*e-qzU2(Z) = !3e-qz

where a, {3,'" are three unknown constants and a*, {3*,.,,* are expressed in terms
of a, {3,'" through Eqs. (25), (26), (32), and (33) as

- W(l) P 2 + 2W(1)k2 / E }a = 2W(1)
P a*.an ,n 1 ,6n

2cl{l= W,Wrl{l*

2c/3 = -W,Wq/3*

The four unknown constants 8, a, {3, I/J will be determined from the four interface
conditions (38) to (41) that now can be written as

W,WOUl + 2pwVo[v] + (W,Wn/2 - 2pVO2)Vl,Z = 0

W.WVl,z = 2CUI
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Using U2 = /3, V2 = -2c/3/qW~), V2 z = 2c/3/W~), we eliminate /3 and obtain
from Eqs. (56)1,2 " ,

W.W8(qI(2)- 4CPWVO)Ul

+ 2pwVoqI(2)Vl + (w:Wn/2 - 2pVO2)(qI(2) - 4CPWVO)Vl,z = 0

We assume that Vl = UlX+ Vl,zY and conclude that

2c = r[2cY + w:WX]

Thus the eigenequation becomes

[I(1)(qI(2) - 4cptJJVo)r + 4cptJJVoqI(2)] [I~1)p2 - 2cW,Wk2/E1] = 0

We note that the root determined by

[I~.)p2 - 2cW,Wk2/E.] = 0

is inadmissible. Thus

I(1)I(2)rq = 4cpcuVo[rI(1) - qI(2)] (nO)

which with the use of Eq. (33) becomes

W(1)W(2)k4I(1)I(2) + 4E E (I(1)I(2) - 16c2
p 2V;4) p 2w4

,n ,n 1 2 II 0 0

+ 2pW2k2(I(2)W(1)I(1)E + I(1)W(2)I(2)E ) = 00,11 2 0,11 1

Thus if !,(2) > !,(l) > 0, then (1)2 < 0, the solution is admissible, and therefore, the
interface is morphologically stable; however, if 0 > !,(2) > !,(l), then the solution is
found to be inadmissible.

Case 3. Three roots p, r, and q are expressed as

P = W/Vo

(62)
~4cpwVo:t y4CpW2I(2) + 2cW;Wk2I(2) /£2 )/I(2)r,q= I

Thus, the perturbation is given by

u1(z) = a*ePZ v,(z) = aePZ for z < Z*(X2' t)

U2(Z) = l/Ie-rz + f3e-qz (63)

V2(Z) = I/I*e-rz + f3 *e-qz for Z > Z*(X2' t)
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where a, /3, 1/1 are three unknown constants and a*, /3*, 1/1* can be expressed in
terms of a, /3, 1/1 through Eqs. (25), (26), (32), and (33) as

- W(l) P 2 + 2W(1)k2 / E }a = 2W(1) pa *

.nn ,n 1 ,9n

2cr/l = - W(2)r"*
,II 'f'

2cf3= -W,Wqf3*

The eigenequations give

(2pVO2 - W,Wn/2)Vl,z - W,WOUI - 4pWVoVi

(65)= (2pVoZ - W,Wn/2)vz,z- W.W9UZ - 4pCJJVovz

(W,Wn/2 - 2pVO2)E1vl,z + 2pVOw(E1 +E2)Vl + W,WoE1u

= (W,Wn/2 - 2pVoZ)Ezvz,z + 2pVOw(E1 +Ez)vz + W,W9Ezuz

(67)W(l)V l = 2CUI

.n ,Z

Equations (67) and (63) imply that

2CV;2W(1)k2 j E - ~(1)1o.20 ,n 1 - "0 .., (68)

which gives a real value of wZ and is thus inadmissible.
If condition (68) cannot be satisfied, then a* = a = 0; in this case 2cuz =

Jt:~)(V2. z), and the eigencondition reduces to

-8cpwVovz = I(Z)vz,z

-4cpVow(El + Ez)vz/Ez = I(Z)vz.z

Thus

I(2) V = 02.%pVOCtJV2 = 0 and

Therefore, V2 = V2,z = 0 and the eigencondition becomes

rl/l* +q{3* =01/1* + {3* = 0 r=q

which gives a real value for (1)2 also and therefore is inadmissible. Thus, Case (3) is
always inadmissible.
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Summary and Discussion of Results

Summarizing we conclude that

(a) If I(2) > I(l) > 0, then the unique admissible solution requires that (J)2 < 0 and
therefore the interface z = 0 is morphologically stable.

(b) If I(2) > 0 but I(l) < 0, then there are some admissible perturbations with
(J) > 0 and the interface z = 0 is unstable.

(c) If 0 > I(2) > I(l), then we have indeed admissible perturbations with (J) > 0 (and
15 = 0), and the steady-state solution (3.1) with the interface z = 0 is unstable.

The above results assert that the necessary and sufficient condition for the

morphological stability of a propagating interphase boundary is I(l) > 0, which
implies that I(2) > 0 and therefore may be expressed as

VO2 < (Io/4cp) (73)

Therefore, the stability condition for a propagating interphase boundary is more
restrictive than the thermoplastic stability condition Io > 0 (cf. Bai [3]). According
to condition (73) the propagating planar interphase boundary will become morpho-

logically unstable when V 02 reaches the critical value (Io/ 4c p) in at least one of
the two phases.
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