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A THElORY OF THERMOVISCOELASTIC DIELECTRICS 

Yu-Ning Huang and R. C. Batra 
Department of Engineering Science and Mechanics 

firgiinia Polytechnic Institute and State Univemi@ 
Blacksburg, Vilginia, USA 

We study finite iieformations of heat conducting uiscocorrs dielectric solidr and derive 
constitutiue relations that satisfi an entropy inequality. These are simplified for or- 
thotropic, tmmvt:~se!y isotropic, and isotropic material.. For each class of materials, 
linear constituth: relations valid for infinitesimal deformations are derived. 

Bell [I] documented that the response of all materials is, in general, nonlinear. For 
piezoelectric ceramics, Lazarus and Crawley [2,31 stated that the material parame- 
ters should be taken to depend upon the induced strains. Norwood et al. [31 and 
Kulkarni and Hanagud [4] used a Neo-Hookean constitutive relation to model the 
response of piezoelectric ceramics; the Neo-Hookean model is the simplest model 
for a nonlinear elastic material. A finite deformation theory of elastic dielectrics 
was developed, amongst others, by Toupin [5] and Eringen and Maugin [6]. 
Tiersten [7] used the theory of invariants [8] to derive electroelastic equations that 
are cubic in the mechanical displacement gradient and the electric potential 
gradient. 

Transversely isotropic piezoelectric materials are widely used in transducers 
and smart structures. 1.n the latter application it is desirable that these materials 
exhibit damping, and accordingly these are now being manufactured from compos- 
ites that show viscous effects. Our goal here is to develop a finite deformation 
theory for nonmagnetizable but heat-conducting unconstrained dielectrics and to 
use the theory of invariants to derive the simplest form of constitutive relations for 
orthotropic, transversely isotropic, and isotropic dielectrics. 

BALANCE LAWS 

We consider a nonmagnetizable dielectric solid with an infinitesimal memory of 
mechanical deformations roughly equivalent to that of a Navier-Stokes fluid; the 
material studied here is simple in the sense of Noll (cf. Truesdell and Noll [9]), is 
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420 Y.-N. HUANG AND R. C. BATRA 

heat conducting, and exhibits piezoelectric and viscous effects. In spatial descrip- 
tion and with quasi-electrostatic approximation, the balance of mass, linear mo- 
mentum, moment of momentum, internal energy, and Maxwell equations are 
(Eringen and Maugin 161) 

p+pdivv=O 

p i  = divi + (q, - div p)e + pb 

t, = -(p 8 ela 

p $ = t r ( t ~ ) + d i v q - p . e - p h  
divd = q, 
curl e = 0 

Here p is the present mass density of a material particle, v is its velocity, d is the 
dielectric displacement vector, p is the polarization vector, e is the electric field, b 
is the body force per unit mass, q, is the prescribed body charge, t is the total 
Cauchy stress given by 

where a @ b denotes the tensor product between vectors a and b, t, is the 
antisymmetric part of t, and 

Note that i is symmetric but t is not. In Eq. (I),, 4 is the modified specific internal 
energy, L = grad v is the velocity gradient, q is the heat flux per unit present area, 
and h is the source of internal energy. Vectors p, e, and d are related by 

The balance laws (1) are supplemented by an entropy inequality, which we take 
as the Clausius-Duhem inequality (cf, Truesdell and No11 [9]): 

Here -q is the specific entropy, 8 > 0 is the absolute temperature of a material 
point, and y is the specific production of entropy. In terms of the free energy 
density 

we obtain from Eqs. (I), and (4) 

as the reduced entropy inequality; here we have eliminated h from (I), and (4). 
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THEOIZY OF THERMOVISCOELASTIC DIELECTRICS 42 1 

Whereas balance laws (1) are valid for all materials and processes, only those 
processes that satisfy the entropy inequality (6) are admissible in a real material. 
Here we adopt the viewpoint that the balance of moment of momentum (11, is 
identically satisfied and the entropy inequality (6) imposes restrictions on the 
admissible constitutive relations. 

Anisotropic Materials 

Constitutive relations distinguish one material from another. Here we consider a 
class of solids that exhibit very short memory of the mechanical deformations 
essentially equivalent to that of Navier-Stokes fluids. For solids the material 
response also depends upon the choice of the reference configuration, which 
henceforth is kept fixed. We use the referential description of motion and assume 
that the response of a material point X is determined by values of 

where 

x = x(X, t )  gives the present position of the materia1 particle that occupied place X 
in the reference configuration. Let 

where 

Then our constitutive h:ypothesis is that 

Henceforth we restrict ourselves to one material point and, therefore, omit the 
explicit dependence of 2 7  upon X. 

Under a change of frame of reference both r and A are scalar quantities; 
thus Eqs. (11) are trivially frame-indifferent. 

In the terms of r and A,  the reduced entropy inequality (6) becomes 
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422 Y.-N. HUANG AND R. C. BATRA 

With P,+(X, t )  - C ( ~ ( X ,  t ) )  and the following usual arguments (see, for example, 
Coleman and No11 [lo]), we obtain 

and 

where 

= ~ ( f )  f = (s, 8,  E) ? = ?' + ?"' ?"" = ?"'(I?) (15) 

Inequality (14) implies that 

A process in which s = 0 a ~ d  G = 0 is referred to as an equilibrium process. Thus 
in an equilibrium process, Tne and Q vanish identically. Also 

in the sense that it! dejerminant and all of its subdeterminants must be nonnega- 
tive. Functions C(I'), Tne(r) ,  and Q ( r )  satisfying (14) and (16) characterize an 
anisotropic nonmagneec dielectric material with a short memory; constitutive 
relations for q, P, and T' are obtained by using (13). Depending upon the material 
symmetries, one can simplify these further. 

Isotropic Materials 

For isotropic materials, functions 2, f "', and Q must satisfy 

for every orthogonal tensor H where 

f = {HSHT, H S W ~ ,  8, HG, HE] 

I 
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THEORY OF THERMOVISCOELASTIC DIELECIRICS 423 

Representation theoreins (cf. Wang [Ill, Smith et al. [12], and Zheng [13]) imply 
that 

where 

( u @ v ) s : = u @ v + v @ u  ( u @ v ) ~ = u @ v - v @ u  

(AB)a := AB - BA (AB)s = (AB + BA) 

I, == tr S I2 = tr S2 I3 = tr S3 I4 = E . E 

Coefficients a, ,  a, ,..., a,, and P ,,..., P,, are functions of 0, and invariants I,, 
12,. . . , IZ8, where 

I,, = G - S E  I,,=G-SE I17=G.S2G 
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424 Y.-N. HUANG AND R. C. BATRA 

In order that Eqs. (20a, b )  satisfy ( 1 6 ~ )  

- - -  
a, = a, = a,= E6= Zl,= Z l l  = O  

- - 
jS2 = p4= p*=o 

where a superimposed bar indicates their values when s = G = 0. 
Equations (13) and (19) yield 

where y, = d 2/81,, i = 1, 2,. . . ,6. 
The challenging (probably insurmountable) task now is to devise experiments 

to determine the functional dependence of C and a,, a , ,  . . . , a,,; PI , .  . . , P,, upon 
their arguments. Since isotropic materials have the largest symmetry group, they 
require the determination of a minimum number of functions. 

Transversely Isotropic Materials 

Piezoceramics are usually poled in a certain direction and can be reasonably 
modeled as transversely isotropic. Let the unit vector N be the axis of transverse 
isotropy. The representation theorem of Zheng [I31 yields 
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THEOlZY OF THERMOVlSCOELASTlC DIELECTRICS 425 

where 

(S(N 8 E:)a)a = S(N 8 E-E 8 N) - (N 8 E-E O N)S (27) 

aO, .. . , nlg, PI , .  .., BIZ are functions of 8 and the invariants J , , .  . ., J3,. These 
invariants are defined iis 

J i = I i  i=1 ,  ..., 5 

J i = I i - ,  i = 1 1 ,  ..., 18 J i = I i + ,  i =  19,20,21 

For Eqs. (26a, b)  to sa1:isfy Eqs. (16a) we must have 

where a superimposed bar indicates their values when s = G = 0. Relations (13), 
and (13), imply that 

where yi = d 2 / d J i .  

Orthotropic Materials 

An orthotropic material point has three orthogonal planes of symmetry; let e,,  e,, 
e, denote unit vectors perpendicular to these planes and 
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426 Y.-N. HUANG AND R. C. BATRA 

The representation theorem of Zheng [13] yields 

where a,, a, ,..., a,,; PI , . .  ., PI, are functions of 8 and invariants I ,,.. ., I,,; 
K,, . . . , K2,. Invariants K,,  . . . , K,, are defined below. 

K, = tr(MS) K, = t r ( ~ S ' )  K3 = e l  . Se, 

K , ,= (E . e , ) (G .e , )  Kz0=E.(MS)aG K ~ ~ = E . ( M S ) ~ G  

Equations (33~2, b )  and (16) imply that 

- - -  - - 
a, = a , = a 3 = E 6 = E 8 = E 1 5 = E 1 6 = E , 7 = E 1 9 = a 2 1 = a 2 3 = 0  

- - (35) 
p* = p 3 = p 7 = p 1 , =  p l 3 = p I 5 = 0  
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THEORY OF THERMOVISCOELASTIC DIELECTRICS 427 

Substitution from Eq. (32) into Eqs. (13), and (13), yields 

f S,M + S,(MS)s + @ e, + 2 S4(e1 @ Se, ), 
(37) 

I 

81: J X  
where y,= -, Si= --. 

81, 3Ki 

LINEAR CONSTITUTIVE RELATIONS 

Linear constitutive rela1.ions are appropriate when the magnitudes of displacement 
gradients and, therefore, of the infinitesimal strain tensor c, its time rate of change 
d ,  electric field E, the relative temperature change 6 =  (8 - eO)/OO, and of the 
gradients of the temperature change are small as compared to one. Since linear 
theories are easy to work with, we give below linear constitutive relations for 
different material symm.etries. 

Anisotropic Materials 

We assume that C, Pkne, and Q are smooth functions of their arguments and can be 
expanded in .terms of a Taylor series about the values their arguments take in the 
reference configuration. The finite strain tensor S is expressed in terms of displace; 
ment gradients. Using Eqs. (13),,,,,; keeping terms of order one in E, i, 8, 
G = Grad 6,  and E; and recalling Eq. (16), we arrive at the following linear 
constitutive relations: D
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428 Y.-N. HUANG AND R. C. BATRA 

Here ?,c, Po, and .II, are the values of the equilibrium stress Te, polarization P, and 
the specific entropy q in the reference configuration. Necessary conditions for Eqs. 
(38),,, to satisfy the reduced entropy inequality (14) imply that the fourth-order 
viscosity tensor Cne and the second-order thermal conductivity tensor K are 
positive definite; however, K need not be symmetric. The fourth-order tensor Ce is 
called the elasticity tensor and the usual symmetry Ce = ceT assumed for it is an 
additional assumption rather than a consequence of the entropy inequality, compe 
nents of the second-order tensor ae are the thermal stress moduli, of the 
third-order tensor D" are the piezoelectric moduli, ~ r ,  may be called the pyroelec- 
tric polarizability vector, and the second-order tensor A is the dielectric susceptibil- 
ity tensor. Tensors such as me and Ce are functions of X only and are constants for 
a homogeneous material. 

Isotropic Materials 

For isotropic materials, Eqs. (38) simplify to 

where A, and po are the Lame's constants, a is the coefficient of thermal 
expansion, A, and p, are the viscosities of the material, a is the dielectric constant, 
and k > 0 is the thermal conductivity of the material. As expected, these materials 
do not exhibit any piezoelectric effect. 

Transversely Isotropic Materials 

Linear constitutive relations for transversely isotropic materials derived by using 
the procedure outlined above are given as 
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THE0R.Y OF THERMOVISCOELASTIC DIELECTRICS 

Recall that N is a unit vector in the direction of transverse isotropy. 

Orthotropic Materials 

Linear constitutive relations for an orthotropic material with planes of symmetries 
perpendicular to orthonormal vectors el,  e,, and e, are 

f e  = (a, + a,, tl:(M~) -t- a 1 2 e l . ~ e l  + a13BI+ 2a16 tr r)1 

+ 2 a 2  r + (a, + a,, tr r + 2a17 tr(Mr) + aI8e,..e( + a l g i ) ~  

1 
q = qo - -(a,,, + a13 t r ~ +  a,, tr(M.1 + a 2 , ( e 1 . ~ e , )  + 2a2,6) 

Po 

CONCLUSIONS 

We derived constitutive relations for finite deformations of orthotropic, trans- 
versely isotropic, and isotropic dielectrics and deduced from them constitutive 
relations appropriate for infinitesimal deformations of these materials. From the 
constitutive relations for finite deformations, one could also derive those for small 
mechanical deformations;, infintesimal temperature changes, and temperature gra- 
dients but strong electric fields and also a second-order theory in which terms up to 
second order in displacement gradients, temperature gradients, relative tempera- 
ture changes, and electric: fields are kept; see, for example, Yang and Batra [14, 151. 
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