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Some aspects of thetmal fracture mechanics of ceramics with temperature-dependent
properties are studied. It is first shown that the square-root singular field still prevaiLY in
the crack tip region. However, the size of the K-dominant zone may be influenced by the
effect of temperature-dependent properties. Then the steady thetmal stress intensity
factor in an edge-cracked strip is calculated. The results show that the stress intensity
factor, which is zero when the temperature dependence of material properties is
neglected, can exceed the fracture toughness of the ceramic when the temperature
dependence of the material properties is considered. Finally, a temperature-dependent
crack-bridging law is proposed to study the R-curoe behavior of polycrystalline ceramics
subjected to elevated temperatures.
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Material properties, such as the modulus of elasticity and the thermal conductivity,
vary with temperature. These properties are usually regarded as constants in
thermal stress analyses of engineering materials and structures, which is approxi-
mately correct when the temperature variation from the initial temperature is not
very high. The structural components used in reactor vessels, turbine engines,
space vehicles, and refractory industries are exposed to high temperature changes.
In the thermal stress analyses of these components, neglecting the temperature
dependence of material properties will usually result in significant errors. Extensive
studies have been conducted on thermal stresses in materials with temperature-
dependent properties, and most of those completed by the early 1990s have
been reviewed by Noda [1, 2]. However, only a little effort has been devoted to
analyzing the thermal fracture of materials with temperature-dependent properties.
Hata [3, 4] studied steady thermal stress intensity factors at a central crack in an
infinite plate using a perturbation technique. The temperature dependence of the
shear modulus, the coefficient of thermal expansion, and thermal conductivity was
included in his analysis. Kokini [5] used the finite element method to calculate
transient thermal stress intensity factors in a cracked strip with temperature-
dependent thermal properties.

Received 11 June 1997; accepted 14 October 1997.
Address correspondence to Romesh C. Batra, Department of Engineering Science & Mechanics,

Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0219.

Journal of Thennal Stresses, 21:157-176, 1998
Copyright @ 1998 Taylor & Francis

0149-5739/98 $12.00 +.00

157



158 Z.-H. JIN AND R. C. BATRA

We study here some aspects of thermal fracture mechanics of ceramics with
temperature-dependent properties. We first investigate the asymptotic expressions
of the crack tip temperature and stress fields and the dominant zone of the
asymptotic solutions. Then, the steady thermal stresses and stress intensity factors
in an edge-cracked strip with temperature-dependent Young's modulus, the coeffi-
cient of thermal expansion, and thermal conductivity are calculated. Finally, the
effect of temperature-dependent crack-face-grain-bridging on the crack growth
resistance curve (R-curve) of a ceramic is explored and the crack growth instability
analyzed.

CRACK TIP FIELDS IN MATERIALS WITH TEMPERATURE-
DEPENDENT PROPERTIES

Basic Equations

A homogeneous material with temperature-dependent properties becomes nonho-
mogeneous when subjected to temperature changes. The basic equations, in
rectangular Cartesian coordinates, governing the Airy stress function, F, and
temperature, T, for nonhomogeneous linear elastic materials undergoing plane
strain deformations are [6]
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where E is Young's modulus, v Poisson's ratio, a the coefficient of thermal
expansion, k the thermal conductivity, K the thermal diffusivity, To a reference
temperature, and V2 the two-dimensional Laplace operator. Since all material
properties are functions of temperature, the derivatives of the properties in Eqs.
(1) and (2) are

1- ,,2

E
~ )E T,;

d=-
,j

(3)

,(1- "' ) d (1- "' ) , d' (1- "' )V - ~--VT+--TT
E dT EdT' E



159THERMAL FRACI1JRE OF CERAMICS

1+v
E

(3)
(Cont.)dk

k ,i = dT T,;

In Eqs. (1) to (3), the indices i and j take values 1 and 2, 8ij is the Kronecker
delta, a repeated index implies summation over the range of the index, and a
comma followed by the index i implies partial differentiation with respect to Xi.
Equation (3) implies that the gradients of the material properties may be singular
at a crack tip because the heat flux (proportional to the temperature gradient) is
generally singular. This is different from conventional nonhomogeneous materials
wherein the gradients of material properties are finite. Also, Eq. (2) is nonlinear in
temperature.

Temperature Fields

We first note that the heat flow across any finite arc is finite. Hence, the singularity
of the heat flux at a crack tip is weaker than ,-1, where, is the distance from the
crack tip. One can show that at a crack tip (, -+ 0) the temperature and the heat
flux have the following asymptotic forms:

KQ(t) ~sin~
V-; 2

T(r, 8,t) = Ttip(t)- (4)--"--

ktip
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(qr,q8)=~ Sln2,cos2
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where qr and q9 are heat fluxes in the radial and tangential directions, (r, (}) are
polar coordinates centered at the crack tip with the crack faces being (} = :!: 1T ,
TtiP(t) is the temperature at the crack tip, ktip the thermal conductivity at the crack
tip, and KQ(t) is the heat flux intensity. Equations (4) and (5) have the same form
as those for materials in which effects of the temperature dependence of material
properties [7] are neglected.

Stress and Deformation Fields

It can be seen from Eqs. (1) and (3) to (5) that the crack tip dominant solution for
the stress function still satisfies a biharmonic equation. Hence, the square-root
singular stress field prevails in the crack tip region

1

~{KIUi~1)(8) + KIIUi~2)(8)} (6)O'jj(r,8,t) =
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and the energy release rate

:7)
2 2

)1 - Vtip

( K2 + K'I
G= I

Etip

Here Elip and Vtip are the Young's modulus and Poisson's ratio at the crack tip.
They usually differ from their values at the room temperature.

Though the square-root singular field (6) is not influenced by the variations of
material properties with temperature, the size of the region in which Eq. (6) holds
(K-dominant zone) will be affected. Jin and Batra [8] have given the following
approximate K-dominance condition for general nonhomogeneous materials

E-1IE..I«r-2,IJ (8)£-11£ « ,-1

For temperature-dependent material properties, the gradients of properties are
given in Eq. (3). Substituting Eq. (3) into Eq. (8) and considering the heat flux field

(5), we have
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The crack tip plastic deformation at room temperature is extremely limited in
ceramics. At high temperatures, however, some plastic deformation may occur.
Under small-scale yielding conditions, the crack tip plastic zone size is approxi-
mately given by (Mode I, plane strain)

2

(10)r =
p

where O"ys is the temperature-dependent yield stress. For polycrystalline ceramics,
a microcracking zone may exist near the crack tip [9, 10]. The approximate size of
the crack tip microcracking zone may again be given by Eq. (10) with O"ys replaced
by O"mc' the stress at which microcracking occurs [11]. Therefore, in order for a
K-dominant zone to exist at the crack tip, Eq. (9) should hold where r> r p. For
isotropic materials with temperature-dependent properties, this condition may also

be approximated as
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mERMAL STRESSES IN A STRIP

Henceforth, we evaluate the themlal stress and the themlal stress intensity factor
in an edge-cracked strip subjected to steady heat flux in the thickness (cracking)
direction. It is typical of problems in structural applications and allows a detailed
discussion of the effects of temperature-dependent material properties. As will be
seen in this article, in contrast to no stresses in the strip with temperature-indepen-
dent properties, the steady themlal stress is significantly high and the stress
intensity factor may exceed the fracture toughness of the material when tempera-
ture-dependent material properties are considered.

Temperature Field

Consider an infinite strip of width b, similar to that shown in Figure 1, subjected to
steady temperatures To and Tb (Tb> To) at the surfaces x[=O and x[=b,
respectively. This problem is one-dimensional since the heat conducts only in the
xl-direction. Thus, the temperature field is a solution of

(12)

T(O) = Tn T(b) = Tb (13)

We approximate the variation of thermal conductivity with temperature by an
affine function

k(T) =ko[l- 8'(T- To)] (14)

Figure 1. An infinite strip containing an ed2e crack

d [ dT ]- k(T)- = 0

dx1 dx1
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where ko is the thermal conductivity at T = To and 8' is a constant. For typical
ceramics, 0.3 X 10-3K-1 < 8' < 0.8 X 10-3K-1 when the temperature does not
exceed 1300 K [12]. It is common to model the temperature dependence of
material properties [1] by affine functions. The temperature field obtained from
Eqs. (12) to (14) is given by

1
(T- To) = ~

where ~T = T b - To. The temperature is a nonlinear function of ~T.

Thennal Stress

The temperature field (15) induces normal stresses in both the X2- and x3-direc-
tions in the strip. We assume that the strip undergoes plane strain deformations in
the (Xl - x2)-plane and is free from constraints at the far away ends. The stress in
the x2-direction is [13]

(T- To) dx1

(16)(T - T O)Xl dx]
b Ea

-(A12 -xIA11) ~ "1""="";

where Ajfi, j = 1,2) and Ao are given in the appendix.
We assume that Poisson's ratio is constant and approximate Young's modulus

and the coefficient of the1mal expansion (CfE) again by affine functions

E(T) =Eo[l- (3'(T- To)]

a(T) = ao[l + 'Y'(T- To)]

where Eo and ao are Young's modulus, the crE at T = To, and [3' and -y' are
constants. For typical ceramics, 0.1 x 10-3K-1 < [3' < 0.4 X 10-3K-1 and 0.1 x
10-3K-1 < -y' < 0.5 X 10-3K-1 when the temperature does not exceed 1300 K
[12]. Figure 2 shows variations of E, a, and k with the temperatures for three
different values of [3, -y, and 8, which are related to [3', -y', and 8' by

(19).8, 8, 'Y) = ( .8', 8', 'Y' )800 K
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(c)

Figure 2. Variations of E, a, and k with temperature T for different values of {3, 'Y, and 6
(Continued).

Substituting Eqs. (15), (17), and (18) into Eq. (16), we obtain the normaliz,ed
thermal stress

(20)

where .4ij (i,j = 1,2), .4°' and Ii (i = 1,2) are given in the appendix.
The thermal stress in the strip will vanish when the temperature dependence

of material properties is neglected. Similarly, when one considers the temperature
dependence of Young's modulus and ignores the temperature dependence of
thermal properties (corresponding to (3' * 0 and 8' = l' = 0 in Eqs. (14), (17), and
(18)), the thermal stress is also zero.

Figure 3 shows the normalized thermal stress for (8,1) = (0.7,0.5) and {3 = 0.0,
0.15,0.30. Since the thermal stress is a nonlinear function of ~T, we take ~T= 800
K here and in all subsequent calculations. It can be seen from Figure 3 that the
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Figure 3. Normalized thermal stress in a strip for .B = 0,0.15,0.30 and 8 = 0.7, 'Y = 0.5.

thermal stress is tensile on the low-temperature side (Xl = 0) and compressive on
the high-temperature side (Xl = b). The maximum tensile stress occurs near or at
Xl = O. The influence of parameter {3 on the thermal stress is insignificant. It seems
that neglecting the temperature dependence of Young's modulus (described by (3)
will not cause significant errors in thermal stresses. When using the material
properties Eo = 300 GPa, Vo = 0.25, ao = 3 X 10-6K-l for a silicon nitride ce-
ramic (Si3N4), the maximum tensile stress for ({3, 8, 1) = (0.3,0.7,0.3) with ~T=
800 K is about 92 MPa, which is high and must be considered along with the
mechanically induced stresses. Figures 4a, b show the normalized thermal stress
for 8 = 0.3, 0.5, 0.7 and ({3, 1) = (0.0,0.0) (Figure 4a) and (0.3, 0.5) (Figure 4b). It
is seen from Figure 4a that the thermal stress is tensile in the interior of the plate
and compressive at the plate surfaces. A similar result was obtained by Ganguly et
al. [14], who only considered temperature-dependent thermal conductivity. It is
evident in Figure 4b that the thermal stress varies dramatically with 8. Larger 8
causes both higher tensile stress at Xl = 0 and severe compressive stress at Xl = b.
However, when only the temperature dependence of thermal conductivity is
considered, the magnitude of the thermal stress is small; the magnitude becomes
large when the combined effects of the temperature dependence of the thermal
conductivity and the coefficient of thermal expansion are considered. Figures 5a, b
depict the normalized thermal stress for 1 = 0.1, 0.3, 0.5 and ({3, 8) = (0.0,0.0)
(Figure 5a) and (0.3, 0.7) (Figure 5b). It is clear from Figure 5a that the stress
distribution is symmetric about Xl = b /2 when only the temperature dependence
of the CfE is considered.
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{3 = 0.3. 8=0.7.
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mERMAL STRESS INTENSITY IN AN EDGE-CRACKED STRIP

As shown previously, tensile thermal stresses exist at the low-temperature side of a
strip with temperature-dependent material properties. Thus, an edge crack at the
low-temperature side (shown in Figure 1) may propagate. In some cases, an interior
crack may also cause a fracture of the strip. We are only concerned here with the
edge crack problem. Since a temperature-dependent Young's modulus only affects
the thermal stress slightly, we, therefore, take Young's modulus to be constant in
the following analysis of a crack problem. The boundary value problem for the
thermally loaded edge-cracked strip is

V2V2F+ ~V2[a(T- To)] = 0Eo

0"11 = 0"12 = 0 Xl = 0, b X2 ~O

{T12 = {T22 = 0 X2 =0O~xl~a

0"12 = V2 = 0 a<xl~b X2 =0

where the temperature is given by Eq. (15), V2 is the displacement in x2-direction,
and a and b equal the crack length and the strip width, respectively.

Using the Fourier transform and the integral equation methods [15], the
preceding boundary value problem is reduced to the singular integral equation

Irl.s 1

where the unknown function cf>(r) is given by

<f>(Xl) = aV2(Xt,O)jaXl

and K(r, s) is a known kernel singular only at (r, s) = (-1, -1), r = 2xl/a - 1.
The function cfJ(r) can be further expressed as [15]

</I(r) = l/I(r)/1[=-;:

where I/I(r) is continuous and bounded on [-1,1]. When c/J(r) is normalized by
(1 + vo)ao~T, the nondimensional thermal stress intensity factor (TSIF), K*, at the
crack tip is obtained as

1= - 21/1(1)
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Figure 6. Normalized thermal stress intensity factor for ~ = 0.3, 0.5, 0.7 and 'Y = 0.5, .B = 0.0.

Figure 6 shows the nondirnensional TSIF versus the normalized crack length
a/b for 8 = 0.3,0.5, 0.7 and ('Y, fJ) = (0.5,0.0). It can be seen that for 8 = 0.7, the
TSIF is always positive and increases with increasing a/b. For 8 = 0.3 and 0.5, the
TSIF also increases with increasing a/b but is negative for a/b < 0.09 (8 = 0.5)
and a/b < 0.38 (8 = 0.3). The negative TSIF means there is no crack-tip opening
for those crack lengths and the crack will not grow. Figure 7 exhibits the TSIF for
'Y = 0.1,0.3,0.5 and (8, fJ) = (0.7,0.0). The TSIF is always positive for 'Y = 0.3 and
0.5, but for 'Y = 0.1 the TSIF is negative for a/b < 0.15. For the example of Si3N4
considered in the previous section, the TSIFs for a/b = 0.1 and 0.2 are about 4.59
MPa/m and 8.18 MPa/m, respectively. The latter far exceeds the fracture
toughness (about 4 - 5 MPa/m) of the material. Note that the specimen is free
from thermal stresses when the temperature dependence of material properties is
not considered.

CRACK GROwm RESISTANCE CURVE

It is well known that polycrystalline ceramics exhibit crack growth resistance
(R-curve) behavior. Though there are several mechanisms of toughening, crack-
face-grain-bridging perhaps contributes most to the toughness increase at least for
coarse-grained ceramics [16-19]. When a crack has initiated, it will !!:row with
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Figure 7. Normalized thermal stress intensity factor for 'Y = 0.1,0.3,0.5 and .5 = 0.7, /3 = 0.0.

grains bridging the crack faces. The grain bridging is characterized by the bridging
law [18, 19]

u= um(l-D/Do)

where u is the bridging stress, Um is the maximum bridging stress, D is the crack
opening displacement, and Do is the maximum crack opening at which the bridging
is lost. Do is usually related to grain size and, therefore, is temperature indepen-
dent. Bower and Ortiz [18] argued that Um is due to compressive thermal residual
stresses by which the grains are pinched to the matrix. When a ceramic is subjected
to elevated temperatures, the thermal residual stress will be relaxed, which will
reduce the bridging stress. We assume that the variation of the maximum bridging
stress Um with temperature is given by

(J"m = (J"o[l-l1'(T- TO)]N

where 0"0 is the maximum bridging stress at T = To, N is an index, and 1]' is a
constant that may be approximately taken to be the inverse of the processing
temperature if we assume that the bridging is completely ineffective at the
processing temperature. Equations (29) and (30) give the temperature-dependent
bridging law as

u= uo[l-TJ'(T- To)]N(l-D/Do)
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Now consider an infinite strip of width b containing an edge crack subjected to
remote bending moment M. The singular integral equation of the crack problem
including the crack bridging law (31) is

11
[ -.!.- +K(r,S) ] t/>(S)ds -a6 ( ~ ) H(r-ro)[l-1j'(T- To)]N rt/>(S)ds

-1 s-r aO r

21T(1 - v~)
=

Eo

Ir! ~ 1

where H( ) is the Heaviside step function, O"b = 6M/b2, ao is the initial crack
length, a = ao + ~a is the total crack length, ~a is the crack growth, , = 2xl/a - 1,
'0 = 2ao/a - 1, and

(33)
-a6 =

21TQn(1 - v~)

is a nondimensional parameter. In Eq. (32), the temperature T(Xl) is for the
specific problem being studied. In our example, T is given by Eq. (15). Hence,
when the temperature dependence of crack bridging is considered, the R-curve will
be influenced by the temperature distribution.

The integral equation (32) has a solution of the form

1/1(,) - ~<1>(') = ~ - yI"[="r

where 1/11 and 1/12 are due to O"b and 0"o, respectively. The crack-tip stress intensity
factor is

1 1
]- 2 "'1(1)O"b - 2"'2(1)0"0K1 = y/;Q" (35)

The effective fracture toughness or the R-curve can be calculated from

(36)
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where ",O(r) = V<l""=-;:) ct>°(r); ct>°(r) is the solution of Eq. (32) without considering
bridging; and lTc, the stress corresponding to K1 = K1c, or the intrinsic fracture
toughness of the material, is given by

1-c-iT -
KIC 1

-+ 1.{iiQ 2"'2(1)0'0 !
!

(37)- (1/2)1/11(1)

Here we assumed that the intrinsic toughness KIC is a constant over the range of
temperatures considered; K IC may strongly depend on temperature, especially at
high temperatures. For example, Mutoh et al. [20] found that the fracture tough-
ness of silicon nitride decreases slightly with increasing temperature in the range
0-1200°C but strongly depends on temperatures above 1200°C.

Figures 8a, b depict the R-curve for the silicon nitride ceramic considered
previously. The specimen width is taken to be 10 mm, and the two initial crack
lengths considered are ao = 0.05 mm (Figure 8a) and 0.5 mm (Figure 8b). Values
assigned to other parameters are KIC = 4 MPa 1m, 0"0 = 6 MPa, Do = 10 .urn,
",' = 0.5 X 800 K-1, and N = 1.0 and 2.0. In our calculations, we took To as the
room temperature 300 K and ~T = 800 K. It is observed that the R-curve is slightly
weakened by considering temperature-dependent bridging. The crack also grows in
the low temperature part of the specimen. It is expected that the effect of
temperature-dependent bridging will be more pronounced for cracks in higher
temperature environments.

We now discuss crack growth instability in the sample specimen. Figure 9
shows both the R-curve (ao/b = 0.005) and the stress intensity factor. It is known
that ceramics exhibit subcritical crack growth behavior [21]. Under steady thermal
loading conditions, a small crack will grow with time. When the crack length is
smaller than about a/b = 0.09, the crack growth is stable and will become unstable
once the crack length reaches about a/b = 0.09. When the temperature depen-
dence of material properties is not considered, however, the crack will never grow
under steady thermal loading because the specimen is free from thermal stresses.

CONCLUSIONS

We showed that the square-root singular field still prevails in the crack-tip region
in materials with temperature-dependent properties. Hence, the stress intensity
factor can still be used to study the fracture behavior of materials. The tempera-
ture dependence of material properties significantly affects thermal stresses and
stress intensity factors in materials and structures subjected to high temperatures.
The steady TSIF in an edge-cracked strip, which is zero when the temperature
dependence of material properties is neglected, can reach and well exceed the
fracture toughness of the ceramic when the temperature dependence of material
properties is considered. Crack bridging, a major toughening mechanism in poly-
crystalline ceramics, may be degraded under high-temperature conditions. A tem-
perature-dependent crack-bridging concept is proposed to study the R-curve be-
h~vi{\r {\f ~pr~mi~~ ~t plp.v~tpci tpmnpr~t11rp~
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Figure 8. Effect of temperature-dependent crack-bridging on R-curve of a ceramic: (a) ao/b = 0.005
and (b) ao/b = 0.05.
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APPENDIX

,2)The scalars Ao, Ajj (i,j = 1,2) in Eq. (16) and Ao, Ajj (i,j = 1,2) and Ij (i =

in Eq. (20) are

Ao =A11A22 -A~2 E' =E/(1- V2)

and

All =

-2

-3

- - - -2
AO =A11A22 -A12
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[ 1 1 1 1
]/1 = - - -( /3' + 5' -1")4T+ -( /3'5' - /3'1" - 5'1")(4TY + -/3'5'1"(4T)3

2 3 4 5

( 1 ) -1

ol-25'4T

[ 1 1 ( 3 ) 1/2 = - - - /3' + -5' -1" 4T+ -(3/3'5' + 5'2 - 2/3'1" - 35'1")(4TY
3 4 2 10

1 1
]+ -(3/3'5'1" - /3'5'2 + 1"5,2)(4T)3 - _/3'5,21"(4T)4

12 14

( 1 ) -2

ol-25'4T


