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The generalized plane strain thermopiezoelectric deformations of laminated thick plates
are analyzed using the Eshelby–Stroh formalism. The laminated plate consists of
homogeneous laminae of arbitrary thicknesses. The three-dimensional equations of
linear anisotropic thermopiezoelectricity simplified to the case of generalized plane
strain deformations are exactly satisfied at every point in the body. The analytical
solution is in terms of an infinite series. The continuity conditions at the interfaces and
boundary conditions at the top and bottom surfaces and edges are used to determine
coefficients in the series. The formulation admits different thermal, electrical, and
mechanical boundary conditions at the edges of each lamina and is applicable to thick
and thin laminated plates. Laminated plates containing piezoelectric laminae poled
either in the thickness direction or in the axial direction are analyzed, and results are
presented for plates with edges either rigidly clamped, simply supported, or traction-free.

Smart structures, consisting of piezoelectric materials integrated with structural
systems, have found widespread use in engineering applications. Piezoelectric
materials are capable of altering the structure’s response through sensing, actua-
tion, and control. They exhibit two basic electromechanical phenomena that have
led to their use as sensors and actuators in the control of structural systems. In
sensor applications, an applied mechanical strain induces an electric potential in
the material due to the direct piezoelectric effect; whereas in actuator applications,
an applied electric field causes the material to deform. Of the 21 crystal classes that
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exhibit the piezoelectric effect, 10 also show the pyroelectric effect, i.e., a tem-
perature change produces an electric potential in the material. It is also observed
that a piezocomposite comprised of piezoceramic inclusions embedded in an elastic
matrix exhibits pyroelectric effect even when none of the constituents are pyro-
electric; for example, see Dunn [1] and Jiang and Batra [2].

Thermal effects greatly influence the performance of piezoelectric actuators and
sensors, especially when they are required to operate in severe temperature en-
vironments. The governing equations of a thermopiezoelectric material—where the
mechanical, electrical, and thermal fields are coupled—have been derived by
Mindlin [3]. General theorems of thermopiezoelectricity are given in Nowacki [4] and
Iesan [5]. Huang and Batra [6] and Yang [7] developed equations governing de-
formations of piezothermoviscoelectric materials.

Tauchert [8] and Jonnalagadda et al. [9] developed plate theories for thermo-
piezoelectric laminated plates. Finite element studies of thermopiezoelectric lami-
nated structures have been carried out by Rao and Sunar [10] and Tzou and Ye [11].
Tang et al. [12] assessed the accuracy of various thermopiezoelectric plate models.
Lee and Saravanos [13] developed a coupled, layerwise theory to analyze the
thermopiezoelectric behavior of composite structures. Ishihara and Noda [14]
studied thermopiezoelectric laminates including the effects of transverse shear de-
formation and coupling. Due to the coupling of the mechanical, electrical, and
thermal fields and its inherent anisotropy, the analysis of thermopiezoelectric
materials is a challenging task and relatively few analytical solutions to the three-
dimensional governing equations are available in the literature. They are mainly
confined to orthorhombic thermopiezoelectric plates whose edges are simply sup-
ported. Analytical solutions to the cylindrical bending of simply supported lami-
nated plates were provided by Dube et al. [15, 16], Kapuria et al. [17], and Shang
et al. [18]. Xu et al. [19] and Tang and Xu [20] obtained an analytical solution to
the coupled three-dimensional thermopiezoelectricity equations for laminated rec-
tangular plates. A three-dimensional transient analysis of thermopiezoelectric
composite plates was carried out by Ootao and Tanigawa [21]. Cheng and Batra
[22] used a three-dimensional asymptotic scheme to analyze thermopiezoelectric
laminates. Ashida and Tauchert [23] derived solutions for circular thermopiezo-
electric plates having arbitrary edge conditions using potential functions. Yang and
Batra [24] analyzed the damping introduced by heat conduction in steady-state
vibrations of a thermopiezoelectric plate. A review of the recent developments in
thermopiezoelectricity with relevance to smart structures was presented by Tau-
chert et al. [25].

The Eshelby–Stroh formalism [26–28] provides exact solutions of governing
equations of anisotropic elasticity under generalized plane strain deformations in
terms of analytic functions. Vel and Batra [29, 30] expressed the analytic functions in
the form of an infinite series to study the generalized plane strain deformations of
laminated piezoelectric and thermoelastic plates subjected to arbitrary boundary
conditions. Here, the method is extended to thermopiezoelectric problems. The
mechanical equilibrium, charge equilibrium, and steady-state heat conduction
equations are exactly satisfied at every point in the domain, and various constants
in the general solution are determined from the boundary conditions at the bound-
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ing surfaces and continuity conditions at the interfaces between adjoining laminae.
This results in an infinite system of linear equations in infinitely many unknowns.
By retaining a large number of terms in the series, the solution can be computed to
any desired degree of accuracy. The formulation admits different mechanical, elec-
trical, and thermal boundary conditions at the edges of each lamina and is applicable
to thick and thin laminated plates. The procedure is illustrated by computing results
for the generalized plane strain deformation of thick laminated plates containing
either thickness poled or axially poled piezoelectric laminae.

FORMULATION OF THE PROBLEM

We use a rectangular Cartesian coordinate system, shown in Figure 1, to describe the
infinitesimal quasi-static deformations of a thermopiezoelectric laminate occupying
the region ½0;L1� � ð�1;1Þ � ½Lð1Þ

3 ;L
ðNþ1Þ
3 � in the unstressed reference configura-

tion. Planes x3 ¼ L
ð1Þ
3 ; . . . ;L

ðnÞ
3 ; . . . ;L

ðNþ1Þ
3 describe the lower bounding surface, the

horizontal interfaces between adjoining laminae, and the top bounding surface.
The equilibrium equations in the absence of body forces, free charges, and heat

sources are [31]

sij;j ¼ 0 Di;i ¼ 0 qi;i ¼ 0 ði; j ¼ 1; 2; 3Þ ð1Þ

where sij is the Cauchy stress tensor, Di the electric displacement vector, and qi the
heat flux vector. A comma followed by index j indicates partial differentiation with
respect to the position xj of a material particle, and a repeated index implies sum-
mation over the range of the index.

The constitutive equations of a linear thermopiezoelectric medium are [31]

sij ¼ CijklEkl � ekijEk � bijT

Di ¼ eiklEkl þ eikEk þ riT

qi ¼ �kijT; j

ð2Þ

Figure 1. An N-layer laminated piezoelectric plate.
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where Ekl is the infinitesimal strain tensor, Ek the electric field vector, T
the temperature rise of a material particle from that in the stress-free reference
configuration, Cijkl the isothermal elastic moduli, ekij the piezoelectric coefficients,
bij the stress-temperature coefficients, eik the permittivities, ri the pyroelectric
coefficients, and kij the thermal conductivities. We will interchangeably use the
direct and the indicial notation. The infinitesimal strain tensor and the electric
field vector are related to the mechanical displacement vector uk and the electric
potential f by

Ekl ¼
1

2
ðuk;l þ ul;kÞ Ek ¼ �f;k ð3Þ

The material constants are assumed to satisfy the following symmetries:

Cijkl ¼ Cjikl ¼ Cklij ekij ¼ ekji bij ¼ bji eik ¼ eki kij ¼ kji ð4Þ

Furthermore, the elasticity tensor, the permittivity tensor, and the thermal con-
ductivity tensor are assumed to be positive definite. In the most general case, there
are 21 independent elastic moduli, 18 independent piezoelectric coefficients, 6 in-
dependent permittivities, 6 independent stress-temperature coefficients, 3 in-
dependent pyroelectric coefficients, and 6 independent thermal conductivities.

On the edges x1 ¼ 0;L1 and on the top and the bottom surfaces x3 ¼ 0;L3, the
displacement or traction components, and the electric potential or the normal
component of the electric displacement are specified as

I
ðsÞ
uf

u

f

" #
þ I

ðsÞ
sD

rs

Ds

" #
¼ fðsÞ on xs ¼ 0

J
ðsÞ
uf

u

f

" #
þ J

ðsÞ
sD

rs

Ds

" #
¼ gðsÞ on xs ¼ Ls ðs ¼ 1; 3Þ

ð5Þ

where ðskÞi ¼ sik; I
ðsÞ
uf; I

ðsÞ
sD; J

ðsÞ
uf, and J

ðsÞ
sD are 4� 4 diagonal matrices; and fðsÞ and gðsÞ

are known vector functions. For ideal restraints at the edges, these diagonal matrices
have entries of either zero or one such that

I
ðsÞ
uf þ I

ðsÞ
sD ¼ J

ðsÞ
uf þ J

ðsÞ
sD ¼ I

with I being the 4� 4 identity matrix. In other words, we specify either a component
of the displacement or of the traction vector in each coordinate direction at every
point on the boundary. For ideal restraints at the edges, if the surface x1 ¼ 0 is ri-
gidly clamped and electrically grounded, then I

ð1Þ
uf ¼ I, I

ð1Þ
sD ¼ 0, and f ð1Þ ¼ 0, that is,

u1 ¼ u2 ¼ u3 ¼ 0 and f ¼ 0. If the edge is simply supported and the normal
component of the electric displacement is zero (the surface is free of electric charge),

then I
ð1Þ
uf ¼ diag½0; 0; 1; 0�, I

ð1Þ
sD ¼ diag½1; 1; 0; 1�, and fð1Þ ¼ 0: Boundary conditions

for a traction-free and electrically grounded edge can be specified as
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I
ð1Þ
uf ¼ diag½0; 0; 0; 1�, Ið1ÞsD ¼ diag½1; 1; 1; 0�, and fð1Þ ¼ 0. The thermal boundary con-
ditions are specified as

mðsÞTþ rðsÞqs ¼ jðsÞ on xs ¼ 0

~mmðsÞTþ ~rrðsÞqs ¼ ~jjðsÞ on xs ¼ Ls ðs ¼ 1; 3Þ
ð6Þ

By appropriately choosing mðsÞ; rðsÞ; ~mmðsÞ, and ~rrðsÞ in these equations, various thermal
boundary conditions corresponding to a prescribed temperature, a prescribed heat
flux, or exposure to an ambient temperature through a boundary conductance can be
specified.

The interface continuity conditions on the material surface x3 ¼ HðnÞ between
adjoining laminae may be specified as follows:

i . We assume that the two adjoining laminae are perfectly bonded together. Thus,
at their common interface, the displacements, surface tractions, electric potential,
the normal component of the electric displacement, the temperature, and the
normal component of the heat flux vector between the adjoining laminae are
taken to be continuous. That is,

½½u�� ¼ 0 ½½r3�� ¼ 0 ½½f�� ¼ 0 ½½D3�� ¼ 0 ½½T�� ¼ 0 ½½q3�� ¼ 0 on x3 ¼HðnÞ ð7Þ

Here ½½u�� denotes the jump in the value of u across an interface.
ii. If the surface x3 ¼ HðnÞ is an electroded interface between two adjoining layers,

then the electric potential on this surface is a known function gðx1Þ while the
normal component of the electric displacement need not be continuous across
the interface, that is,

½½u�� ¼ 0 ½½r3�� ¼ 0 f ¼ gðx1Þ ½½T �� ¼ 0 ½½q3�� ¼ 0 on x3 ¼ HðnÞ ð8Þ

Since the applied loads are independent of x2, the body is of infinite extent in the
x2-direction, and material properties are uniform, we postulate that the displacement
vector u; the electric potential f, and the temperature change T are functions of x1
and x3 only. Thus deformations of the laminate correspond to a generalized plane
state of deformation.

SOLUTION OF THE PROBLEM

We extend the Eshelby–Stroh [26, 27] formalism as described by Ting [28] to obtain a
general solution of Eqs. (1) and (2). Boundary conditions (5) and (6), and interface
conditions (7) or (8), will be used to find constants in the general solution. We
construct a local coordinate system x

ðnÞ
1 ; x

ðnÞ
2 ; x

ðnÞ
3 with origin at the point where the

global x3-axis intersects the bottom surface of the nth lamina; the local axes are
parallel to the global axes (Figure 1). The thickness of the nth lamina is denoted by

hðnÞ ¼ L
ðnþ1Þ
3 � L

ðnÞ
3 .
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A General Solution

In deriving a general solution of Eqs. (1) and (2) for the nth lamina, we drop the
superscript n for convenience, it being understood that all material properties and
variables belong to this lamina. Assume that

u

f

� �
¼ a fðzÞ þ c gðztÞ T ¼ g0ðztÞ ð9Þ

where

z ¼ x1 þ p x3 zt ¼ x1 þ t x3

f and g are arbitrary analytic functions of their arguments, and a; c; p, and t are
possible complex constants to be determined. Substituting Eqs. (9) and (3) into
Eq. (2) and the result into Eq. (1) gives

Dð pÞa ¼ 0

Dð pÞc ¼ bbb1 þ tbbb3
k33t2 þ ðk13 þ k31Þtþ k11 ¼ 0

ð10Þ

where

Dð pÞ ¼ Qþ pðRþ RTÞ þ p2T

Q ¼
QE e11

eT11 �e11

" #
R ¼

RE e31

eT13 �e13

" #
T ¼

TE e33

eT33 �e33

" #
QE

ik ¼ Ci1k1 RE
ik ¼ Ci1k3 TE

ik ¼ Ci3k3

ðeijÞk ¼ eijk ðbkÞi ¼ bik bbbk ¼ bk

�rk

" #
ð11Þ

The eigenvalue t depends on the components of the thermal conductivity tensor
and satisfies the quadratic equation (10)3. Since kij is positive definite, t obtained by
solving Eq. (10)3 cannot be real [28, 32]. We denote the root with positive imaginary
part by t and its complex conjugate by �tt. The eigenvalues p and their associated
eigenvectors a are obtained by solving the eigenvalue problem (10)1. Since Cjmqr and
ejm are positive definite, p cannot be real [28, 33]. Therefore, there are four pairs of
complex conjugates for p. Let

ImðpaÞ > 0 paþ4 ¼ �ppa aaþ4 ¼ �aaa ða ¼ 1; 2; 3; 4Þ ð12Þ

The vector c associated with the thermal eigenvalue t is obtained by solving the
system of equations (10)2. If the eigenvalues pa and t are distinct, a general solution
of Eqs. (1) and (2) obtained by superposing solutions of the form (9) is
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u

f

" #
¼

X4
a¼1

aa faðzaÞ þ �aaa faþ4ð�zzaÞ½ � þ c g1ðztÞ þ �cc g2ð�zztÞ

T ¼ g01ðztÞ þ g02ð�zztÞ

ð13Þ

where fa ða ¼ 1; 2; . . . ; 8Þ, g1 and g2 are arbitrary analytic functions, za ¼ x1 þ pax3,
and g0ðzÞ ¼ dgðzÞ=dz. Substituting Eq. (13) into Eq. (2) yields

r1

D1

" #
¼

X4
a¼1

½�pabaf
0
aðzaÞ � �ppa�bbaf

0
aþ4ð�zzaÞ� � tdg01ðztÞ � �tt�ddg02ð�zztÞ

s3

D3

" #
¼

X4
a¼1

½baf 0aðzaÞ þ �bbaf
0
aþ4ð�zzaÞ� þ dg01ðztÞ þ �ddg02ð�zztÞ

q ¼ �ðk1 þ tk3Þg001ðztÞ � ðk1 þ �ttk3Þg002ð�zztÞ

ð14Þ

where

ba ¼ ðRT þ paTÞaa d ¼ ðRT þ tTÞc� bbb3 ðkmÞj ¼ kjm

The general solution (13) and (14) is applicable when (i) there exist four independent
eigenvectors aa even when the eigenvalues pa ða ¼ 1; . . . ; 4Þ are not distinct and (ii)
either t is not equal to one of the p’s or if t ¼ p, then Eq. (10)2 can be solved for c.
Materials that do not satisfy these conditions are degenerate thermopiezoelectric
materials. Wu [34] and Yang et al. [35] described the procedure by which the general
solution for degenerate materials can be constructed. Consider a degenerate material
for which p1 ¼ p2 6¼ p3 6¼ p4, t 6¼ pa, and there is only one eigenvector a1 associated
with the double root p1. A second independent solution associated with the eigen-
value p1 is

u ¼ d

dp1
½a1 f2ðz1Þ� ¼

da1
dp1

f2ðz1Þ þ a1
df2ðz1Þ
dp1

ð15Þ

Here da1=dp1 is obtained by differentiating Eq. (10)1,

D
da1
dp1

þ dD

dp1
a1 ¼ 0 ð16Þ

Dempsey and Sinclair [36] proved the existence of a nontrivial solution for a1 and
da1=dp1 of Eqs. (10)1 and (16). Therefore, the general solution is

u ¼
X4
a¼1

aa faðzaÞ þ �aaa faþ4ð�zzaÞ½ � þ a1
df2ðz1Þ
dp1

þ �aa1
df5ð�zz1Þ
d�pp1

þ c g1ðztÞ þ �cc g2ð�zztÞ

T ¼ g01ðztÞ þ g02ð�zztÞ
ð17Þ
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where a2 ¼ da1=dp1. The corresponding general solution for the stress tensor and the
heat flux is obtained by substituting Eq. (17) into Eq. (2). It is important to note that,
regardless of whether the material is degenerate or not, there are 10 arbitrary ana-
lytic functions, namely fa ða ¼ 1; . . . ; 8Þ, g1, and g2. Our treatment of the degenerate
case differs from that of Wu [34] and Yang et al. [35] only in one aspect, namely, we
do not require f2ðz1Þ ¼ f1ðz1Þ as they do.

A Series Solution

Even though Eq. (13) satisfies the equilibrium equations (1) for any analytic func-
tions fa; g1, and g2, a choice based on the geometry of the problem and boundary
conditions can reduce the algebraic work involved. We select for the nth lamina

faðzaÞ ¼
X1
m¼0

fvð1Þma expðZma zaÞ þ wð1Þ
ma expðZmaðl� zaÞÞg

þ
X1
k¼0

fvð3Þka expðlka zaÞ þ w
ð3Þ
ka expðlkaðpa h� zaÞÞg

faþ4ð�zzaÞ ¼ faðzaÞ ða ¼ 1; 2; 3; 4Þ

ð18Þ

where 0 � x1 � L1; 0 � x3 � h;

Zma ¼
�m0pi
pah

if m ¼ 0

� mpi
pah

if m � 1

(
lka ¼

k0pi
L1

if k ¼ 0
kpi
L1

if k � 1

(
ð19Þ

and m0; k0 2 ð0; 1Þ. The functions involving m0 and k0 play the role of the constant
term in a Fourier series expansion. The functions g1 and g2 are chosen as

g1ðztÞ ¼
X1
m¼0

fv̂vð1Þm expðxm ztÞ þ ŵwð1Þ
m expðxmðl� ztÞÞg

þ
X1
k¼0

fv̂vð3Þk expðzk ztÞ þ ŵw
ð3Þ
k expðzkðt h� ztÞÞg

g2ð�zztÞ ¼ g1ðztÞ

ð20Þ

where

xm ¼ � m0pi
th if m ¼ 0

� mpi
th if m � 1

�
zk ¼

k0pi
L1

if k ¼ 0
kpi
L1

if k � 1

(
ð21Þ

The functions expðZmazaÞ in Eq. (18) vary sinusoidally on the surface x1 ¼ 0 of
the nth lamina and decay exponentially in the x1-direction. With increasing m, higher
harmonics are introduced on the surface x1 ¼ 0 accompanied by steeper exponential
decay in the x1-direction. Similarly, functions expðZmaðl� zaÞÞ; expðlkazaÞ, and
expðlkaðpah� zaÞÞ vary sinusoidally on surfaces x1 ¼ L1, x3 ¼ 0, and x3 ¼ h, re-
spectively. The inequality (12)1 ensures that all functions decay exponentially toward
the interior of the lamina. Equations (18)2 and (20)2 for faþ4ð�zzaÞ and g2ð�zztÞ ensure
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that mechanical displacements, stresses, the electric potential, the electric displace-
ment, the temperature change, and the heat flux are real valued.

The unknown coefficients v
ðsÞ
ka ;w

ðsÞ
ka ; v̂v

ðsÞ
k ; ŵw

ðsÞ
k ðs ¼ 1; 3Þ in the series are assumed to

be complex for k 6¼ 0 and real when k ¼ 0. The superscript s ¼ 1; 3 indicates that the
exponential function associated with the unknown has a sinusoidal variation on the
surface xs ¼ const. Substituting Eqs. (18) and (20) into Eq. (13) results in the fol-
lowing expression for the mechanical displacement, the electric potential, and the
temperature change for nondegenerate materials

u

f

� �
¼ A

X1
m¼0

½hexpðZm�z�Þi vð1Þm þ hexpðZm�ðl� z�ÞÞiwð1Þ
m �

(

þ
X1
k¼0

½hexpðlk�z�Þi vð3Þk þ hexpðlk�ðp�h� z�ÞÞiwð3Þ
k �

)

þ c
X1
m¼0

½expðxmztÞ v̂vð1Þm þ expðxmðl� ztÞÞ ŵwð1Þ
m �

(

þ
X1
k¼0

½expðzkztÞ v̂vð3Þk þ expðzkðth� ztÞÞ ŵwð3Þ
k �

)
þ conjugate

T ¼
X1
m¼0

½xm expðxmztÞ v̂vð1Þm � xm expðxmðl� ztÞÞ ŵwð1Þ
m �

(

þ
X1
k¼0

½zk expðzkztÞ v̂vð3Þk � zk expðzkðth� ztÞÞ ŵwð3Þ
k �

)
þ conjugate

ð22Þ

where

A ¼ ½a1; a2; a3; a4� hcðz�Þi ¼ diag½cðz1Þ;cðz2Þ;cðz3Þ;cðz4Þ�

ðvðsÞm Þa ¼ vðsÞma ðwðsÞ
m Þa ¼ wðsÞ

ma a ¼ 1; . . . ; 4

and conjugate stands for the complex conjugate of the explicitly stated terms. Ex-
pressions for stress components and the electric displacement vector, obtained by
substituting Eqs. (18) and (20) into Eqs. (14)1,2 are

s1

D1

� �
¼ B

X1
m¼0

½�hp�Zm� expðZm�z�Þi vð1Þm þ hp�Zm� expðZm�ðl� z�ÞÞiwð1Þ
m �

(

þ
X1
k¼0

½�hp�lk� expðlk�z�Þi vð3Þk þ hp�lk� expðlk�ðp�h� z�ÞÞiwð3Þ
k �

)

þ td
X1
m¼0

½�xm expðxmztÞv̂vð1Þm þ xm expðxmðl� ztÞÞŵwð1Þ
m �

(

þ
X1
k¼0

½�zk expðzkztÞ v̂vð3Þk þ zk expðzkðth� ztÞÞŵwð3Þ
k �

)
þ conjugate ð23Þ
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s3

D3

� �
¼ B

X1
m¼0

½hZm� expðZm�z�Þi vð1Þm � hZm� expðZm�ðl� z�ÞÞiwð1Þ
m �

(

þ
X1
k¼0

½hlk� expðlk�z�Þi vð3Þk � hlk� expðlk�ðp�h� z�ÞÞiwð3Þ
k �

)

þ d
X1
m¼0

½xm expðxmztÞv̂vð1Þm � xm expðxmðl� ztÞÞŵwð1Þ
m �

(

þ
X1
k¼0

½zk expðzkztÞv̂vð3Þk � zk expðzkðth� ztÞÞŵwð3Þ
k �

)
þ conjugate ð24Þ

where B ¼ ½b1; b2; b3; b4�: The expression for the heat flux obtained by substituting
Eqs. (18) and (20) into Eq. (14)3 is

q ¼ �ðk1 þ tk3Þ
X1
m¼0

½x2m expðxmztÞv̂vð1Þm þ x2m expðxmðl� ztÞÞŵwð1Þ
m �

(

þ
X1
k¼0

½z2k expðzkztÞv̂v
ð3Þ
k þ z2k expðzkðth� ztÞÞŵwð3Þ

k �
)

þ conjugate

ð25Þ

SATISFACTION OF BOUNDARY AND INTERFACE CONDITIONS

Each lamina has a set of coefficients v
ðsÞ
k , w

ðsÞ
k , v̂v

ðsÞ
k , ŵw

ðsÞ
k ðs ¼ 1; 3Þ that are determined

by the classical Fourier series method from the interface continuity conditions and
boundary conditions on all surfaces of the laminate.

Since the heat conduction problem is uncoupled from the mechanical problem,
we first determine the temperature field by imposing the thermal boundary condi-
tions on the four bounding surfaces of the laminate and the continuity of tem-
perature and the heat flux across interfaces between adjoining laminae. On the top
surface x3 ¼ L

ðNþ1Þ
3 of the laminate, we extend the component functions defined over

ð0;L1Þ in Eq. (22)2 to the interval ð�L1; 0Þ in the x1-direction. The functions
expðzkztÞ and expðzkðth� ztÞÞ that are sinusoidal in the x1-direction are extended
without modification since they form the basis functions on this surface, except for
expðz0ztÞ and expðz0ðth� ztÞÞ that are extended as even functions since they re-
present the constant terms in the Fourier series representation. The functions
expðxmztÞ and expðxmðl� ztÞÞ are extended as even functions since they vary ex-
ponentially in the x1-direction. We multiply Eq. (6)2 for s ¼ 3 by expð jpix1=L1Þ and
integrate the result with respect to x1 from �L1 to L1 to obtainZ L1

�L1

f ~mmð3ÞTþ ~rrð3Þq3 � ~jjð3Þgexpðjpix1=L1Þ dx1 ¼ 0 ðx3 ¼ L
ðNþ1Þ
3 ; j ¼ 1; 2; 3; . . .Þ

ð26Þ
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The same procedure is used to enforce the thermal boundary conditions (6) for the
bottom surface, the edges, and the interface thermal continuity conditions (7)5,6.
Substituting for T and q into Eq. (26) and the other equations that enforce the
thermal boundary and interface continuity conditions results in a nonstandard in-
finite set of linear equations for the unknowns v̂v

ðsÞ
k ; ŵw

ðsÞ
k ðs ¼ 1; 3Þ:

The electromechanical boundary conditions (5) and interface continuity condi-
tions (7) or (8) for the displacements and tractions are also enforced in a similar
manner. For example, the mechanical boundary conditions on the surface
x3 ¼ L

ðNþ1Þ
3 will give

Z L1

�L1

J
ð3Þ
uf

u

f

� �
þ J

ð3Þ
sD

r3

D3

� �
� gð3Þ

� �
expðjpix1=L1Þ dx1 ¼ 0

ðx3 ¼ L
ðNþ1Þ
3 ; j ¼ 1; 2; 3; . . .Þ ð27Þ

Enforcing all electromechanical boundary and interface conditions will yield another
nonstandard infinite set of linear equations for v

ðsÞ
m and w

ðsÞ
m . A general theory for the

resulting infinite system of equations does not exist. However, reasonably accurate
solutions may be obtained by truncating the series involving summations over m and
k in Eqs. (18) and (20) to MðnÞ and K terms, respectively. In general, we try to
maintain approximately the same period of the largest harmonic on all interfaces and
boundaries by choosing MðnÞ ¼ CeilðKhðnÞ=L1Þ, where CeilðyÞ gives the smallest in-
teger greater than or equal to y. The truncated set of coefficients v̂v

ðsÞ
k ; ŵw

ðsÞ
k are de-

termined first by solving the truncated set of linear equations corresponding to the
heat conduction problem. The truncated set of coefficients v

ðsÞ
m ;w

ðsÞ
m are determined

next by solving the truncated system of linear equations obtained by enforcing the
mechanical boundary and interface continuity conditions.

The solution (22) indicates that the component functions decrease exponentially
from the boundary=interfaces into the interior of the nth lamina. By truncating the
series, we have effectively ignored coefficients with suffices greater than a particular
value and approximated coefficients of the remaining terms in the series. Due to the
rapid decay of component functions associated with large suffices, the truncation of
the series will not greatly influence the solution at the interior points. A larger value
of K is expected to give a more accurate solution at points close to the boundary and
interfaces. Note that the coefficients v

ð3Þ
k and w

ð3Þ
k in the expressions for the stresses

and electric displacements in Eqs. (23) and (24) are multiplied by lk�, and v
ð1Þ
m and

w
ð1Þ
m are multiplied by Zm�. However, the coefficients of these terms in the expressions

(22)1 for displacements are unity. Since lk� and Zm� increase as the suffices k and m
increase, the terms with large suffices are more significant for the stresses than for
the displacements. Thus, the stresses will converge more slowly than the displace-
ments. After coefficients have been determined by satisfying the boundary and the
interface conditions, displacements, the electric potential, stresses, the electric dis-
placement, the temperature, and the heat flux at any point can be obtained from
Eqs. (22)–(25).
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RESULTS AND DISCUSSION

We present results for hybrid laminates with each lamina made of either graph-
ite=epoxy (Gr=Ep) or PZT-5A. The principal material axis of the Gr=Ep lamina
is assumed to be in the x1-x2 plane and inclined at an angle c to the x1-axis. The
nonzero values of material properties for the Gr=Ep are listed in Table 1 for c¼ 0�,
90�, and �45�. We consider two types of piezoelectric actuators, namely thickness
poled PZT-5A and axially poled PZT-5A. Thickness poled piezoelectric materials are
poled in the x3-direction and their primary mode of actuation is by ex-
tension=contraction in the x1-x2 plane when subjected to an electric field in the
thickness direction. Thickness poled piezoelectric materials are the most common
type used as sensors and actuators. Axially poled piezoelectric materials are poled in
the x1-direction, and their primary mode of actuation is by transverse shear strain in
the x1-x3 plane when it is subjected to an electric field in the thickness direction. This
is the lesser known shear mode that has been studied by Borieseiko et al. [37], Zhang
and Sun [38], Benjeddou et al. [39], Vel and Batra [40, 41], and Batra and Geng [42].
Different piezoceramic constants are effective in the extension and shear mode pie-
zoceramic plates; their nonzero material parameters are given in Table 1. The ma-
terial properties of the axially poled PZT-5A were obtained by a tensor
transformation of the material properties given by Xu et al. [19] for thickness poled
PZT-5A. In this section, we denote the thickness of the plate by H, its length by L,
and the length-to-thickness ratio L/H by S.

Validation of the Approach

The solution procedure is validated by comparing our results with the exact results
given by Dube et al. [15] for a simply supported cadmium selenide plate that is
exposed to an ambient temperature on the top surface through a boundary con-
ductance. The geometry, material properties, applied loads, and normalization of the
results are the same as those employed by Dube et al. [15]. Values computed using
K ¼ 500 terms are given in Table 2 for a thick plate with length-to-thickness ratio
S ¼ 2 and for a thin plate with S ¼ 20. Results for displacements, stresses, the
electric potential, the electric displacements, and the temperature change are essen-
tially identical to those obtained by Dube et al. [15].

Thickness Poled Piezoelectric Materials

We analyze plates made of either homogeneous thickness poled PZT-5A or laminated
plates consisting of Gr=Ep and PZT-5A laminae. The edges x1 ¼ 0 and L are either
clamped (u1 ¼ u2 ¼ u3 ¼ 0) or traction-free (s11 ¼ s12 ¼ s13 ¼ 0) or simply supported
(s11 ¼ s12 ¼ 0; u3 ¼ 0). For laminates with thickness poled piezoelectric materials we
study the effect of thermal loads only since a three-dimensional solution formechanical
and electrical loads has alreadybeen givenbyVel andBatra [29]. For the linear problem
considered here, results for combined mechanical, electrical, and thermal loads can be
obtained by the superposition of results for each of the three loads.
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The top and bottom surfaces of the piezoelectric layer are electroded; the bottom
surface is maintained at the reference temperature and free of traction, that is,
Tðx1; 0Þ ¼ 0, and s3ðx1; 0Þ ¼ s3ðx1;HÞ ¼ 0. The top surface x3 ¼ H is subjected to
the sinusoidal temperature change

Tðx1;HÞ ¼ T0 sin
px1
L

ð28Þ

The edges x1 ¼ 0;L are electrically grounded (f ¼ 0) and maintained at the reference
temperature (T ¼ 0). The mechanical displacements, stresses, electric displacements,
the electric potential, and the temperature change are nondimensionalized as

Table 1 Material properties of the graphite-epoxy and PZT-5A layers

Material Property Gr=Ep 0� Gr=Ep 90� Gr=Ep �45� Thickness Poled PZT-5A Axially Poled PZT-5A

C1111 (GPa) 183.44 11.662 58.128 99.201 86.856

C2222 (GPa) 11.662 183.44 58.128 99.201 99.201

C3333 (GPa) 11.662 11.662 11.662 86.856 99.201

C1122 (GPa) 4.363 4.363 43.788 54.016 50.778

C1133 (GPa) 4.363 3.918 4.140 50.778 50.778

C2233 (GPa) 3.918 4.363 4.140 50.778 54.016

C2323 (GPa) 2.870 7.170 5.020 21.100 22.593

C3131 (GPa) 7.170 2.870 5.020 21.100 21.100

C1212 (GPa) 7.170 7.170 46.595 22.593 21.100

C1112 (GPa) 0 0 �42.945 0 0

C2212 (GPa) 0 0 �42.945 0 0

C3312 (GPa) 0 0 �0.2222 0 0

C2331 (GPa) 0 0 �2.150 0 0

b11 ð105 PaK�1Þ 2.000 3.506 7.580 3.314 3.260

b22 ð105 PaK�1Þ 3.506 2.000 7.280 3.314 3.314

b12 ð105 PaK�1Þ 0 0 �4.484 0 0

b33 ð105 PaK�1Þ 3.506 3.506 3.531 3.260 3.314

e111 (C m�2Þ 0 0 0 0 15.118

e122 (C m�2Þ 0 0 0 0 �7.209

e133 (C m�2Þ 0 0 0 0 �7.209

e113 (C m�2Þ 0 0 0 12.322 0

e223 (C m�2Þ 0 0 0 12.322 0

e212 (C m�2Þ 0 0 0 0 12.322

e311 (C m�2Þ 0 0 0 �7.209 0

e322 (C m�2Þ 0 0 0 �7.209 0

e333 (C m�2Þ 0 0 0 15.118 0

e313 (C m�2Þ 0 0 0 0 12.322

E11 ð10�10 F=m) 153.0 153.0 153.0 153.0 150.0

E22 ð10�10 F=m) 153.0 153.0 153.0 153.0 153.0

E33 ð10�10 F=m) 153.0 153.0 153.0 150.0 153.0

r1 ðCm�2K�1Þ 0 0 0 0 0.0007

r3 ðCm�2K�1Þ 0 0 0 0.0007 0

k11 ðWm�1K�1Þ 1.5 0.5 1.0 1.8 1.8

k22 ðWm�1K�1Þ 0.5 1.5 1.0 1.8 1.8

k12 ðWm�1K�1Þ 0 0 �0.5 0 0

k33 ðWm�1K�1Þ 0.5 0.5 0.5 1.8 1.8
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�uui ¼
ui

La0T0
�ssij ¼

sij
C0a0T0

�ff ¼ e0f
C0La0T0

�DDi ¼
Di

e0a0T0

�TT ¼ T

T0
ð29Þ

where C0 ¼ 99:201GPa, e0 ¼ 7:209C	m�2, and a0 ¼ 1:5� 10�6 K�1 are representa-
tive moduli of PZT-5A.

Homogeneous plates. The first example concerns a homogeneous PZT-5A plate
poled in the thickness direction. The plate is clamped at x1 ¼ 0 and simply supported
at x1 ¼ L. The top and bottom surfaces are electrically grounded. The effect of
truncation of series on the solution is investigated for a thick clamped simply sup-
ported laminate. Table 3 shows that the values of the normalized mechanical dis-
placements, stresses, the electric potential, the electric displacement, and the
temperature have converged to at least four significant digits with K ¼ 500 terms,
while reasonable accuracy may be obtained with 100 terms. Although k0 in Eqs. (19)
and (21) was chosen to be 0.5 for this study, a similar convergence behavior was
observed for other values of k0. All results in the tables and plots to follow are
obtained by retaining 500 terms in the series solution.

The longitudinal variation of the transverse deflection, the electric potential, the
transverse shear stress, and the transverse normal stress is shown in Figure 2 for
three different length-to-thickness ratios of the clamped simply supported plate
subjected to the thermal load. Steep gradients in the transverse shear and normal
stresses at x1 ¼ 0, shown in Figures 2(c, d), are due to the well-known boundary
layer effects at the clamped edge, which is absent at the simply supported edge. It is
observed that the axial width of the boundary layer region is inversely proportional
to the aspect ratio S of the plate. Figure 3 shows on four cross-sections, the through-
the-thickness variation of the axial displacement, longitudinal stress, transverse shear
stress, and transverse normal stress for S ¼ 4. The axial displacement �uu1 has an al-
most linear variation in the thickness direction, except within the boundary layer.

Table 2 Comparison of the present solution for a single-layer cadmium selenide

plate with the exact results of Dube et al. [15]

S ¼ 2 S ¼ 20

Normalized Results Dube et al. [15] Present Analysis Dube et al. [15] Present Analysis

102�uu1ð0;HÞ �29.33 �29.330 �43.11 �43.112

102�uu3ðL2 ;H2Þ/S 4.832 4.8325 2.313 2.3126

102�ss11ðL2 ;HÞS2 �6.236 �6.2361 �14.37 �14.374

102�ss13ð0;H4ÞS3 1.660 1.6597 4.226 4.2262

102�ss33ðL2 ;H2ÞS4 1.759 1.7586 4.426 4.4265

104�ffðL2 ;H2ÞS 8.946 8.9457 5.195 5.1949
�TTðL2 ;HÞ 0.6357 0.63570 0.9172 0.91724
�DD3ðL2 ;HÞ �1.622 �1.6220 �3.125 �3.1254
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The transverse shear stress �ss13 takes on the classic parabolic distribution at the
midspan location and near the simply supported edge. However, within the
boundary layer region at x1=L ¼ 0:01, the transverse shear stress �ss13 has steep
gradients at the top and bottom surfaces; the maximum value occurs at x3 ’ 0:05H
and 0:95H, while the minimum transverse shear stress occurs at the midsurface.
The magnitude of the transverse normal stress �ss33 within the boundary layer region

Table 3 Convergence study for a homogeneous thickness poled PZT-5A

clamped simply supported plate subjected to the thermal load, S ¼ 5

K �uu3ðL2 ;H2Þ �ss11ðL2 ;HÞ 10�ss13ðL4 ;H2Þ 104�ss33 L
2 ;

H
2

� �
102�ff L

2 ;
H
2

� �
�DD3

L
2 ;H

� �
�TT L

2 ;
H
2

� �
50 1.5147 �1.2555 1.4351 18.887 �5.3005 33.564 0.46378

100 1.5125 �1.2519 1.4371 18.889 �5.3013 33.592 0.46378

200 1.5116 �1.2534 1.4380 18.891 �5.3016 33.588 0.46378

300 1.5114 �1.2538 1.4382 18.891 �5.3017 33.587 0.46378

400 1.5113 �1.2540 1.4383 18.891 �5.3017 33.586 0.46378

500 1.5112 �1.2541 1.4384 18.891 �5.3018 33.586 0.46378

Figure 2. Longitudinal variation of (a) transverse displacement, (b) electric potential, (c) transverse shear

stress, and (d) transverse normal stress for a homogeneous thickness poled PZT-5A clamped simply

supported plate for the thermal load and length-to-thickness ratios S ¼ 4; 8, and 12:
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is significantly larger than that at any other region of the plate. The transverse
normal stress at x1=L ¼ 0:01 also has steep gradients at the top and bottom surfaces;
its magnitude is largest at x3 ’ 0:1H and 0:9H and equals nearly 30% of the mag-
nitude of the longitudinal stress there.

Results for a clamped-free homogeneous PZT-5A plate poled in the thickness
direction and subjected to the thermal load are presented in Figure 4. The
longitudinal variation of the transverse shear and normal stresses on three horizontal
planes is depicted in Figures 4(a, b). It is observed that the transverse normal stress is
largest at the clamped edge. Sharp gradients near the clamped and free edges in the
distribution of the normal stress are indicative of the boundary layer effects near
these edges. The electric potential has a parabolic profile in the thickness direction as
shown in Figure 4(c). It suggests that a plate theory should have at least quadratic
terms in the expansion for the electric potential in the thickness direction. Through-
the-thickness variations of the transverse shear stress at x1=L ¼ 0:05; 0:1; 0:3; and 0:9
are given in Figure 4(d). Numerical results at specific locations for clamped
simply supported plates for length-to-thickness ratios S ¼ 4; 8, and 12 are given in
Table 4.

Figure 3. Through-the-thickness distribution of (a) axial deflection, (b) longitudinal stress, (c) transverse

shear stress, and (d) transverse normal stress for a homogeneous thickness poled PZT-5A clamped simply

supported plate for the thermal load and length-to-thickness ratio S ¼ 4.
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Figure 4. Longitudinal variation of (a) transverse shear stress, (b) transverse normal stress, and through-

the-thickness variation of (c) electric potential, and (d) transverse shear stress for a homogeneous thick-

ness poled PZT-5A cantilever plate for the thermal load and length-to-thickness ratio S ¼ 4.

Table 4 Displacements, stresses, electric potential, electric displacement,

and temperature change for homogeneous thickness poled PZT-5A

clamped simply supported plates for the thermal load and

length-to-thickness ratios S ¼ 4, 8, and 12

Variable S ¼ 4 S ¼ 8 S ¼ 12

10�uu1ð3L/4;HÞ 7.5473 7.0583 6.9431

10�uu3ðL/2;H/2Þ/S 3.7780 3.0513 2.8940

�ss11ðL/2;HÞ �1.2541 �1.2980 �1.3107

�ss11ðL/2; 0Þ 1.0590 1.2461 1.2874

�ss13ðL/2;H/2ÞS 0.5695 0.6339 0.6487

�ss13ðL/12;H/2ÞS 0.5339 0.6932 0.6618

�ss33ðL/12; 3H/4ÞS2 �0.5806 0.1820 0.0742

10�ffðL/4;H/2ÞS �1.6556 �1.7943 �1.8200
�DD1ðL/4;H/2ÞS/10 2.1919 2.2310 2.2484
�DD3ðL/2;HÞ/10 3.3586 3.3513 3.3500
�TTðL/2;H/2Þ 0.4638 0.4905 0.4957
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Hybrid laminated plates. A multilayered cross-ply plate consisting of three layers in
which the bottom two layers are made of Gr=Ep and the top layer is made of
thickness poled PZT-5A is studied next. The fibers are oriented parallel and per-
pendicular to the x1-axis in the bottom and middle layers, respectively, that is, it is a
[0� Gr=Ep, 90� Gr=Ep, extension PZT-5A] laminate. The Gr=Ep laminae are of
thicknesses 0:4H, and the PZT-5A lamina is of thickness 0:2H: The top and bottom
surfaces of the PZT-5A lamina are electroded and electrically grounded, and the
laminae are assumed to be perfectly bonded to each other. As in the case of the
homogeneous piezoelectric plate studied earlier, the top and bottom surfaces are free
of external traction. Through-the-thickness variations of the axial and transverse
displacements, electric potential, and transverse shear stresses for a clamped simply
supported multilayer plate with S ¼ 4 are presented in Figure 5 for the thermal load
applied to the top surface. As is evident from Figures 5(a, b), the continuity of the
displacements at the interfaces x3=H ¼ 0:4 and 0.8 between adjoining laminae are
satisfied very well. The transverse elongation, which is the difference between the
transverse displacements of the corresponding points on the top and bottom surfaces
shown in Figure 5(b), is significant due to the thermal load. Since our analysis is

Figure 5. Through-the-thickness distribution of (a) axial deflection, (b) transverse deflection, (c) electric

potential, and (d) transverse shear stress for a laminated [0� Gr=Ep, 90� Gr=Ep, thickness poled PZT-5A]

clamped simply supported plate for the thermal load and length-to-thickness ratio S ¼ 4:
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based on three-dimensional thermopiezoelectricity, it is able to capture the thickness
distention of the laminate, unlike many plate theories that neglect this effect. The
total electric potential, which is the sum of the electric potential due to the thermal
deformation and the pyroelectric effect has a parabolic through-the-thickness profile
in the PZT. The transverse shear stress, depicted in Figure 5(d), is seen to be largest
either at the interface between the Gr=Ep laminae or the interface between the
Gr=Ep and the PZT.

Next, consider an angle-ply multilayered laminate that also consists of three
layers with the bottom and middle layers made of Gr=Ep and a PZT-5A top layer,
except that the fibers are oriented at 45�and �45� to the x1-axis in the bottom and
middle layers, respectively, to form a [45� Gr=Ep, �45� Gr=Ep, extension PZT-5A]
laminate. The boundary conditions are identical to the cross-ply laminate studied
earlier. Through-the-thickness profiles of the displacement and stress components
are given in Figure 6 for the thermal load. As expected, the nondimensionalized
longitudinal stress �ss11 is discontinuous at the interfaces between the laminae due to
the abrupt change in material properties. However, the transverse shear stresses �ss13
and �ss23, shown in Figures 6ðc; d), are continuous at points on the interfaces.

Figure 6. Through-the-thickness distribution of (a) axial deflection, (b) transverse deflection, (c) electric

potential, and (d) transverse shear stress for a laminated [45� Gr=Ep, �45� Gr=Ep, thickness poled PZT-

5A] clamped simply supported plate for the thermal load and length-to-thickness ratio S ¼ 4:
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Axially Poled Piezoelectric Materials

Homogeneous plates. Consider a clamped simply supported homogeneous shear
mode PZT-5A plate that is poled in the x1-direction. The top and bottom surfaces
are electroded. The bottom surface is maintained at the reference temperature and is
traction free, that is, Tðx1; 0Þ ¼ 0 and r3ðx1; 0Þ ¼ 0. The edges of the plate are free of
electric charge, that is, D1 ¼ 0 at x1 ¼ 0;L. In addition to the thermal load (28), we
also consider the electrical load

½fðx1; 0Þ;fðx1;HÞ� ¼ 1

2
½�f0;f0� cos

px1
L

Tðx1;HÞ ¼ 0 r3ðx1;HÞ ¼ 0 ð30Þ

The mechanical displacements, stresses, electric displacements, electric potential,
and temperature change are nondimensionalized as

ûui ¼
uiC0

e0f0

ŝsij ¼
sijL
e0f0

f̂f ¼ f
f0

D̂Di ¼
DiLC0

e20f0

ð31Þ

Figure 7. Through-the-thickness distribution of (a) longitudinal stress, (b) transverse shear stress, (c)

transverse normal stress, and (d) transverse electric displacement for a homogeneous axially poled PZT-5A

clamped simply supported plate for the thermal load and length-to-thickness ratio S ¼ 4:
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for the electrical load. The nondimensionalization parameters C0 and e0 are the same
as those used earlier for the thickness poled piezoelectric materials.

Figure 7 evinces the through-the-thickness variation of the stresses and the
longitudinal electric displacement for a clamped simply supported thick plate with
S ¼ 4 and subjected to the thermal load. The longitudinal stress is a nonlinear
function of x3, especially in regions adjoining the clamped edge. The transverse shear
stress profile is not parabolic at sections near the clamped edge due to the boundary
layer effect there. The through-the-thickness variation of the transverse electric
displacement �DD3 is shown in Figure 7(d) at four locations along the span of the plate.
The transverse shear and normal stresses for the electric load are shown in Figure 8.
It is evident from Figure 8ða; b) that there are steep gradients in the stresses at the
clamped edges. The transverse normal stress is intense within the boundary layer
x1 < 0:25L and essentially negligible at other locations. The through-the-thickness
profile of the transverse shear stress is parabolic at the midspan and near the simply
supported edge but deviates noticeably from the parabolic profile near the clamped
edge.

Figure 8. Longitudinal variation of (a) transverse shear stress, and (b) transverse normal stress, and

through-the-thickness variation of (c) transverse shear stress, and (d) transverse normal stress for a

homogeneous axially poled PZT-5A clamped simply supported plate for the electric load and length-to-

thickness ratio S ¼ 4:
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Hybrid laminated plates. A plate consisting of three layers with the bottom layer
made of 0� Gr=Ep, the middle layer made of axially poled PZT-5A, and the top
layer made of 90� Gr=Ep is considered next. Each Gr=Ep layer has thickness
0:4H and the PZT-5A layer is of thickness 0:2H: The top and bottom surfaces of
the sandwiched PZT-5A layer are electrically grounded. The edges are free of
electric charge and maintained at the reference temperature. Results for a simply
supported plate that is subjected to the thermal load (28) are presented in Figure
9 for length-to-thickness ratios S ¼ 4; 8, and 10: The axial displacement profile in
the thickness direction is a nonlinear function of x3 for thick plates, but it ap-
proaches an affine function for thin plates. The through-the-thickness variation of
the transverse deflection is depicted in Figure 9ðb). The transverse deflection is
constant in the thickness direction for thin plates, but there is significant thickness
distention for thick plates. The longitudinal stress, shown in Figure 9ðc), is a
piecewise affine function of the thickness coordinate for both thick and thin
plates.

Figure 9. Through-the-thickness distribution of (a) axial deflection, (b) transverse deflection, (c) longi-

tudinal stress, and (d) transverse shear stress for a laminated [0� Gr=Ep, axially poled PZT-5A, 90� Gr=Ep]

simply supported plate for the thermal load and length-to-thickness ratios S ¼ 4; 8, and 12.

374 S. S. VEL AND R. C. BATRA



CONCLUSIONS

We have used the Eshelby–Stroh formalism to study the generalized plane strain
deformations of multilayered thermopiezoelectric plates subjected to arbitrary
thermal, electrical, and mechanical boundary conditions at the edges. The three-
dimensional equations of quasi-static, linear thermopiezoelectricity simplified to the
case of generalized plane strain deformations are exactly satisfied at every point in
the body. The analytical solution is in terms of infinite series. The continuity con-
ditions at the interfaces and boundary conditions on the bounding surfaces are used
to determine coefficients in the series.

Results for a thermal load applied to the top surface of homogeneous and
laminated piezoelectric plates poled in the thickness direction with clamped,
traction-free, or simply supported edges have been presented. For a clamped simply
supported plate, the stresses exhibit boundary layers at the clamped edges. The width
of the boundary layers generally decreases for increasing length-to-thickness ratio.
Results are also presented for homogeneous and piezoelectric plates that are poled in
the axial direction.

The computed results prove the versatility of the proposed technique for ob-
taining accurate stresses for thick hybrid multilayered plates subjected to various
thermal, electrical, and mechanical boundary conditions. The tabulated results
presented herein should help ascertain the accuracy of various plate theories and
finite element formulations.
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