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We study quasi-static deformations of a thermoviscoplastic thin rectangular bar sub-
jected to a dead axial load and the upper surface heated by a laser. By assuming that
strains due to elastic deformations and thermal expansion are small as compared to the
plastic strains, the problem is simplified to that of simultaneously solving two coupled
ordinary differential equations. One of these equations gives the evolution of the axial
strain, and the other describes the evolution of the damage. It is found that after a
certain time interval, whose duration depends upon the axial prestress, the strain rate
increases rapidly. On a log-log plot, the time to failure decreases essentially affinely
with an increase in the laser power density.
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The development of inelastic stresses due to transient heating of a structure and
especially a space structure has received considerable attention. For example, Weiner
[1] analyzed stresses in a plate on the assumption that the heat input varies slowly.
Landau et al. [2] found stresses developed during the quenching process by assuming
that the material viscosity is temperature dependent. Kammash et al. [3] considered a
linearly work-hardening cylinder subjected to a distributed heat source, lateral
pressure, and axial loads. Parkes [4, 5] determined stresses in an elastoplastic bar
due to a sudden change in its surface temperature. He delineated effects of the
plate thickness, axial load, residual stresses, and the intensity of heating on the
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development of plastic zones as a function of time. These investigations are mainly
focused on the analysis of creep or heat treatment.

The deformation behavior of metals including aluminum alloys at elevated
temperatures and moderate strain rates (0.01–100 sec�1) has been recently reviewed
by McQueen [6] and Evangelista and Spigarelli [7]. Nearly all metals exhibit strain
hardening, strain-rate hardening, and thermal softening. Among several consti-
tutive relations incorporating these three effects, the one proposed by Johnson and
Cook [8] is often used because of the availability of values of parameters for several
materials. We use it here to analyze deformations of a thin rectangular aluminum
2024 bar whose upper surface is exposed to laser heating and lower surface is
insulated.

Recently, emphasis has been placed on developing an understanding of the
interaction of a low- and mid-power continuous-wave laser with a prestressed
structure; for example, see Chen [9, 10] and Zhao et al. [11]. The deformation and
failure mechanisms of prestressed structures due to laser heating are also of interest
to several industries. The transfer of energy from the laser to the structure can induce
thermal softening of the material, its melting, and evaporation. Depending upon the
prestress, the laser power, the duration of exposure, and the boundary conditions,
the structure may deform severely and cracks may develop in it. A thorough analysis
of such a problem will need to be numerical. However, considerable insight can be
gained by simplifying the problem through various engineering approximations.
Here we use the continuum damage mechanics approach to analyze deformations
and the failure of a prestressed thin rectangular bar.

FORMULATION OF THE PROBLEM

A schematic sketch of the problem studied is shown in Figure 1. A thin rectangular
bar under an axial dead load P has length L0 and area of cross section S0 in the
reference configuration. The upper surface of the bar is subjected to laser heating and
the lower surface is thermally insulated. The bar is assumed to be made of a thermo-
viscoplastic material that exhibits strain hardening, strain-rate hardening, and
thermal softening. Furthermore, relative changes in the dimensions of the bar caused
by the temperature rise, change in volume due to the damage evolved, and elastic
deformations are assumed to be negligible as compared to those induced by plastic
deformations. This is reasonable since the axial plastic strain at failure is about 0.2,
and approximate values of the elastic and the thermal strains are 0.007 and 0.01,

Figure 1. Schematic sketch of the problem studied.
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respectively. The temperature rise due to energy dissipated because of plastic de-
formations has been assumed to be negligible as compared to that caused by the laser
heating. This is justified since the density of plastic working is several orders of
magnitude smaller than the density of laser power except when the material is about
to fail.

We assume that the heat flux supplied by the laser is independent of time t and is
uniformly distributed on the upper surface, z ¼ 0, of the bar. Also, the heat is
assumed to flow only in the thickness direction. The evolution of temperature, T, in
the bar is governed by
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Here c is the specific heat, r the mass density, k the thermal conductivity, h
the bar thickness, I0 the laser intensity, and b the fraction of the laser output
absorbed by the bar. The solution of these equations, taken from Carlsaw and
Jaeger [12], is
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where �k ¼ k=rc is the diffusivity. For a 2.5-mm-thick aluminum 2024 bar,
�kp2=h2 ¼ 77:6 sec�1, so for t � 0:04 sec, the exponential term on the right-hand side
of Eq. (5) makes a negligible contribution. For a thicker bar, this term will become
small at a later time. The difference between the temperatures of the top and the
bottom surfaces of the bar is given by
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We let TaðtÞ ¼ ðTð0; tÞ þ Tðh; tÞÞ=2 and d ¼ D
Ta
. Ta equals the average of the

temperatures of the top and the bottom surfaces of the bar, D the difference in the
temperatures of these two surfaces, and d the relative temperature difference. Figure 2
depicts the evolution of d with the change in the intensity of the laser, and for
a given laser intensity. Figure 3 shows the evolution of d for bars of different
thicknesses. It is clear that d is usually less than 10%. If the insulation boundary
condition (2) were replaced by that corresponding to free convection, then the
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Figure 2. Evolution of the relative temperature difference in a 2.5-mm-thick aluminum bar for different

values of the laser power density.

Figure 3. Evolution of the relative temperature difference in an aluminum bar for I0 ¼ 107 W=m2 and

different thicknesses of the bar.
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maximum value of d will be higher than 0.1. Henceforth, when studying the evo-
lution of the axial stress, axial strain, and resulting damage, we ignore through-
the-thickness variation of temperature. We thus take the temperature of the bar at
any time to be uniform and given by

TðtÞ ¼ Tð0Þ þ bI0
rch

t ð7Þ

Equation (7) is obtained by equating the heat input to that needed to raise the
temperature of the body. Alternatively, k @2T

@z2
in Eq. (1) can be approximated by bI0

h

and the resulting equation integrated with respect to time. For a 2.5-mm-thick
aluminum 2024 bar and b ¼ 0:25,

TðtÞ ¼ Tð0Þ þ 41:26� 10�6I0t ð8Þ

where I0 is in W=m2, t in seconds, and T in Kelvin.
We assume that mechanical deformations of the bar are isochoric and slow, so

inertia effects are negligible. Thus, for equilibrium,

P ¼ s0ð1�D0ÞS0 ¼ sð1�DÞS ð9Þ

where s is the axial stress, D the damage parameter, S the area of cross section, and
subscript zero signifies the value of the quantity in the reference configuration. Here
we followed Lemaitre [13] and assumed that the effective area of cross section of the
damaged material equals ð1�DÞ times the geometric area of cross section. In order
for viscoplastic deformations to be isochoric,

L0S0 ¼ LS ð10Þ

Recall that the logarithmic axial strain or the true axial strain, e, is given by

e ¼ ln
L

L0
¼ ln

S0

S
ð11Þ

Substituting in Eq. (11) for S0

S from Eq. (9) we obtain

e ¼ ln
sð1�DÞ
s0ð1�D0Þ

or s ¼ s0ð1�D0Þ
ð1�DÞ ee ð12Þ

For a uniaxial stress state, the Johnson–Cook thermoviscoplastic relation [8] reduces
to

s ¼ ðAþ BenÞ
�
1þ C ln

_e
_e0

� ��
ð1� Tm

� Þ ð13Þ

where T� ¼ T�Tr

Tm�Tr
; A; B; C; n, and m are material parameters; Tr and Tm are,

respectively, the room temperature and the melting temperature of the material;
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and _e0 is the reference strain rate. Substituting for s from Eq. (12) into Eq. (13) gives
the following equation for the evolution of the axial strain e caused by the temper-
ature rise

ð1�D0Þs0ee ¼ ð1�DÞðAþ BenÞ
�
1þ C ln

_e
_e0

� ��
ð1� Tm

� Þ ð14Þ

We now postulate that the damage, D, evolves according to the relation
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s2eq
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where seq ¼ 3
2 sijsij
� �1=2

, sij ¼ sij � smdij is the deviatoric stress, sm ¼ sii=3 is the
hydrostatic pressure, n is Poisson’s ratio, sy equals the yield stress of the material in
a quasi-static uniaxial stress test, dij is the Kronecker delta, and a is a constant.
For sij ¼ sdi1dj1 Eq. (15) reduces to

_D ¼ 1

a
s2
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_e ð16Þ

which when combined with Eq. (12) gives
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Equations (14) and (17) are solved simultaneously for e and D under the initial
conditions eð0Þ ¼ 0, Dð0Þ ¼ D0 by the fourth-order Runge–Kutta method. We can
thus determine the evolution of the plastic strain and the damage induced in the bar
because of the laser heating. Note that Eq. (17) can be integrated to obtain a re-
lationship between D and e.

RESULTS AND DISCUSSION

Unless otherwise noted, we compute results for a 2.5-mm-thick aluminum 2024 bar.
Values of material parameters are

A ¼ 265MPa B ¼ 426MPa n ¼ 0:34 C ¼ 0:015 m ¼ 1:0

a ¼ 0:6 n ¼ 1

3
Tr ¼ 293K Tm ¼ 775K r ¼ 2770 kg=m3

c ¼ 875 J=kgK _e0 ¼
1

s
k ¼ 119W=mK sy ¼ 265MPa

We set D0 ¼ 10�5, b ¼ 0:25; and assume that the bar has failed when the damage
parameter D equals 0.3. Substituting from Eq. (8) into Eq. (14) and solving for _e
we get
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_e ¼ eg where g ¼ 1

C

ð1�D0Þs0ee
ð1�DÞðAþ BenÞð1� 8:56� 10�8I0tÞ

� 1

� �
ð18Þ

Because C ¼ 0:015, the strain rate and hence the damage rate (cf. Eq. (17)) begin to
increase very rapidly once the term in brackets on the right-hand side of Eq. (18) is
close to C. For s0 ¼ 0:1A and I0 ¼ 107 W=m2, g will be nearly 1 at t ’ 1 sec, and the
bar will fail approximately one second after the laser power is switched on.

Figure 4. The evolution of the axial plastic strain rate with and without consideration of the damage for

different values of (a) the prestress and (b) the laser power density.
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Figure 4a exhibits, for different values of the prestress s0, the evolution of the
axial plastic strain rate for I0 ¼ 107 W=m2 and D0 ¼ 10�5. Results have been com-
puted with and without the consideration of the damage. It is clear that for each
value of the axial prestress considered, the strain rate increases very slowly in the
beginning and then increases very rapidly. The time when the material starts de-
forming quickly decreases with an increase in the axial prestress. Also, the rapid

Figure 5. Effect on the time to failure of (a) the laser power density and (b) the prestress.
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increase of the axial strain rate occurs earlier when the evolution of damage is
considered as compared to that when the damage evolution is ignored; the difference
between the two times increases with an increase in the prestress. For a fixed value of
the axial prestress, as shown in Figure 4b, the time when the axial strain rate begins
to increase swiftly decreases with an increase in the laser power density and is
virtually the same whether or not the damage evolution is considered.

Figure 6. The dependence upon the laser power density at the instance of failure of (a) the temperature rise

and (b) the axial strain.
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In Figure 5a, we have plotted, on a log-log scale, the time to failure, tf, as a
function of the laser power density. It is evident that tf / 1

Ia
0
and the value of a is

essentially independent of the prestress. As shown in Figure 5b, the time to failure
decreases exponentially with an increase in the prestress s0; note the logarithmic
scale on the vertical axis. For different values of the axial prestress, the temperature

Figure 7. The evolution of the plastic strain rate for different time durations of the laser power density (a)

without damage evolution and (b) with damage evolution.
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rise at the instant of the material failure as a function of the laser power density is
plotted in Figure 6a; corresponding values of the failure axial strain are plotted in
Figure 6b. Whereas the failure axial strain does not depend upon the laser power
density, the temperature at the instant of failure exhibits a strong dependence upon
both the laser power density and the prestress.

For s0 ¼ 175MPa, Figures 7a,b exhibit the effect of the duration of laser heating
with I0 ¼ 1 kW=cm2 on the resulting deformations. The bar is heated with the laser
for a certain time t0 and the power is turned off. Subsequently, the temperature of
the body is assumed to equal that when the laser power was shut down. In view of
the time to failure of 1 sec or less, this is reasonable since the heat transfer to the
surrounding air is usually a slow process. Whereas the evolution of damage is con-
sidered for results plotted in Figure 7b, it is neglected for those plotted in Figure 7a.
A comparison of these two sets of results reveals that subsequent to turning off the
laser power the strain rate is higher when damage evolution is considered than that
when it is ignored. These results suggest that the following three types of
deformation modes will occur depending upon the time when the laser is turned off.
For values of t0 exceeding 0:66 sec, the bar will rupture soon after the laser is shut off.
For low values of t0 such as 0:1 sec, and 0:2 sec, the bar will not fail since the strain
rate stays very small. For moderate values of t0 it will take a while before the bar fails
after the laser is turned off. These values of t0 are material dependent and will vary
with the critical value assigned to the damage. Values of the temperature, the axial
strain, and the axial strain rate at the instant of turning off the laser power are listed
in Table 1. It is evident that they are very sensitive to the duration t0 of laser heating
and also to the consideration of the damage.

We remark that various simplifying assumptions have reduced the solution of
the initial boundary value problem to that of simultaneously solving two coupled
nonlinear ordinary differential equations. Thus the computed time to failure should
be regarded as approximate since the actual time will also depend upon the boundary
conditions imposed at the edges of the bar=plate.

Table 1 Duration of laser heating and values of the axial strain, the axial strain

rate, and the temperature rise when the laser is turned off

Laser Heating

Duration (s)

Temperature

Rise (K)

Axial Strain

Rate (1=s) Axial Strain

With damage 0.59 243 0.18 0.018

0.60 247.5 0.42 0.020

0.61 251 0.46 0.026

0.62 255.8 0.74 0.031

0.63 260 1.08 0.040

0.64 264.1 1.75 0.054

Without damage 0.65 268.2 0.91 0.045

0.66 272.3 1.18 0.055

0.67 276.4 1.6 0.069

0.68 280.6 2.35 0.088

0.69 284.7 4.08 0.12
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Equations (14) and (18) reveal that if thermal softening signified by the term
ð1� Tm

� Þ is enhanced, then for the same value of the axial strain e, _e will increase,
which because of Eq. (17) will enlarge _D. A higher value of D gives even a larger _e; cf.
Eq. (18). This process feeds on itself until the material fails. It suggests that the
thermal softening will play a dominant role in determining the time to failure.

CONCLUSIONS

By neglecting inertia effects, assuming that the temperature of the bar is uniform, and
using a continuum damage mechanics approach, we computed the time to failure of a
prestressed thin rectangular bar whose upper surface is heated by a laser and the
lower surface is thermally insulated. The solution of the transient problem reveals
that the temperature of the thin bar will become uniform soon after the laser is turned
on. The Johnson–Cook thermoviscoplastic relation is used to model the material. It
is found that the time to failure tf and the laser power density I0 satisfy tfI

a
0 ¼ const,

where a is a constant and tf decreases exponentially with an increase in the level of the
prestress. If the laser is turned off prior to the onset of failure, then depending upon
when the laser is shut off, the bar may rupture quickly or slowly or not at all.
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