
TRANSIENT THERMOELASTIC DEFORMATIONS OF

A THICK FUNCTIONALLY GRADED PLATE

L. F. Qian and R. C. Batra

Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University

Blacksburg, VA

We study transient thermoelastic deformations of a thick functionally graded plate with
edges held at a uniform temperature and either simply supported or clamped. Either the
temperature or the heat flux is prescribed on the top surface of the plate with the bottom
surface of the plate kept at either a uniform temperature or thermally insulated.
Stresses and deformations induced due to the simultaneous application of the transient
thermal and mechanical loads are also computed. The problem is solved by using a
higher order shear and normal deformable plate theory and a meshless local Petrov–
Galerkin method. Only nodal coordinates are needed, and neither nodal connectivity nor
a background mesh is employed. The validity of the method and of the computer code is
established by comparing computed results with the analytical solution of the three-
dimensional thermoelasticity equations for a simply supported plate. Results are then
computed for clamped plates. It is found that the centroidal deflection and the axial
stress induced at the centroid of the top surface of the plate are significantly influenced
by boundary conditions at the plate edges.

Keywords clamped edges, higher order shear and normal deformable plate theory
(HOSNDPT), meshless local Petrov–Galerkin (MLPG) method, transient thermo-
mechanical loads

Structural components such as turbines, aircraft engines, and space vehicles are often
exposed to very high temperatures and thermal shocks which inevitably induce
severe thermal stresses that can cause catastrophic failure of materials. One way to
mitigate this effect is to use functionally graded materials (FGMs). Material prop-
erties vary continuously in an FGM thereby eliminating sharp jumps in stresses at
the interfaces between two distinct materials as may occur in a laminated composite.
Lavendel and Goetzel [1] proposed a graded cermet for jet engine blades to exploit
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the high ductility and toughness of metals and high thermal strength of ceramics.
FGMs have also been used for structural optimization (such as bamboo, a highly
optimized naturally occurring FGM [2]), increasing electrical conductivity without
impairing the thermal insulation of ceramics [3], improving adhesion [4], and
enhancing biocompatibility [5].

In a functionally graded (FG) plate, material properties are generally assumed to
vary continuously in the thickness direction only. The response of an FG plate to
mechanical and thermal loads may be computed analytically, numerically, or
experimentally. We are not aware of experimental results on FG plates subjected to
transient thermal and mechanical loads. The analysis techniques may employ either
three-dimensional (3D) thermoelasticity equations or two-dimensional (2D) plate
theories. One could use either the finite element method (FEM), or the finite
difference method or a meshless method to find an approximate solution of a given
boundary-value problem. For an FGM made of two or more constituents, one also
employs a homogenization technique, such as the Mori–Tanaka method [6], Hill’s
self-consistent approach [7], the mean-field theory (e.g., see [8]), the three-phase
model [9], or the rule of mixtures [10]. Vel and Batra [11] have shown that the re-
sponses of an FG plate computed with the Mori–Tanaka and the self-consistent
homogenization techniques differ from each other. Analytical solutions of 3D
thermoelasticity equations for simply supported FG plates subjected to either time-
independent mechanical and=or thermal loads or transient thermal loads with
mechanical inertia neglected have been given by Vel and Batra [11, 12]; they [13] have
also given an analytical solution for the vibrations of a simply supported FG plate.
However, no analytical solution is available for any other type of boundary condi-
tions at the edges. Even for simply supported FG plates subjected to transient
thermomechanical loads, no analytical solution has been reported in the literature.
Batra [14] analyzed by the FEM plane strain deformations of a circular cylinder
made of a Mooney–Rivlin material with the two material parameters depending on
the radial coordinate. Thus, except for special edge conditions and=or special
geometries, one needs to find an approximate solution numerically.

There is an enormous amount of literature on finding approximate thermo-
mechanical response of FG plates under different mechanical and thermal loads;
only a few representative papers are mentioned here. Ootao et al. [15] have analyzed
3D transient thermal stresses in an FG hollow cylinder, and Ootao and Tanigawa
[16] in an FG sphere. They approximated the body as being made of several layers of
slightly different homogeneous materials. Kim and Noda [17] used a similar
approximation and used Green’s function method to find the 3D transient tem-
perature distribution in the plate. Tanigawa et al. [18] have examined the bending of
an inhomogeneous plate with thermal loads applied on a part of its top surface;
other works on thermoelastic deformations of FGM plates may be found in the
literature [11, 13, 15–18].

Rogers et al. [19] have employed the method of asymptotic expansion to analyze
3D static deformations of inhomogeneous plates. However, boundary conditions
on the edges of the plate in their theory are applied in an average sense like those
in 2D plate theories. Reddy and Cheng [20] have also used the method of asymp-
totic expansion to study the 3D thermoelastic deformations of an FG plate. If
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boundary-layer effects near clamped and free edges can be neglected then the method
of asymptotic expansion can also be used to study plate problems for different edge
conditions.

Plate theories used to analyze mechanical deformations of an FG plate include
the first-order shear deformation theory (FSDT) [21], the third-order shear
deformation theory (TSDT) [22], and the higher order shear and normal deforma-
tion plate theory (HOSNDPT) [23, 24]. In the HOSNDPT, normal and tangential
tractions prescribed on the top and the bottom surfaces of the plate are exactly
satisfied, and the transverse normal and shear stresses are computed from equation
of the plate theory rather than from the balance of linear momentum. The order of
the theory can be adjusted to predict accurate results for thick plates. Cheng and
Batra [21] related deflections of a simply supported FG polygonal plate given by the
FSDT and the TSDT to that of an equivalent homogeneous Kirchhoff plate. Loy
et al. [25] have studied vibrations of FG cylindrical shells using Love’s shell theory.

Whereas the FEM has often been used to find an approximate solution of an
initial-boundary-value problem, the use of a meshless method is gaining popularity
now. Two recent books [26, 27] summarize developments in meshless methods that
include the element-free Galerkin [28], the hp-clouds [29], the reproducing kernel
particle [30], the smoothed particle hydrodynamics [31, 32], the diffuse element [33],
the partition of unity FE [34], the natural element [35], meshless Galerkin methods
using radial basis functions [36], the meshless local Petrov–Galerkin (MLPG) [37],
the finite difference, and the collocation methods. The major difference between
the FEM and a meshless method is in the generation of basis functions used to
approximate a function. We use the MLPG method mainly because it does not re-
quire any background mesh to evaluate different integrals appearing in the
weak formulation of the problem. Also, with no nodal connectivity needed, the effort
required to prepare the input file is much less than that for the FEM. Table 1
compares the MLPG with the FEM for the analysis of an elastodynamic problem.

Here we use the HOSNDPT to analyze the transient thermoelastic problem of
an FG plate with edges either simply supported or clamped. Other edge conditions
can also be easily considered. The transverse normal and shear stresses are computed
from equations of the plate theory rather than by integrating the balance of linear
momentum with respect to the thickness coordinate. The plate equations are solved
numerically by using the MLPG method [37].

The paper is organized as follows. Section 2 summarizes equations governing the
3D transient thermoelastic deformations of an inhomogeneous plate, and a weak
formulation of the problem; section 2 also describes briefly the HOSNDPT. Section 3
gives the weak formulation of the problem, and section 4 the MLPG formulation.
Section 5 lists equations used to deduce effective properties of an FG plate from
those of its two constituents and their volume fractions. Computed results for dif-
ferent thermal loads and the two edge conditions are presented in section 6, where
they are also compared with the analytical solution of Vel and Batra [11, 12] for a
simply supported FG plate. Results computed for transient thermal loads with and
without the consideration of inertia effects reveal that inertia forces have a negligible
effect on the computed fields. However, when time-dependent thermal and
mechanical loads are applied simultaneously then inertia forces significantly
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influence stresses and temperatures induced in the plate. Conclusions are summar-
ized in the final section.

PROBLEM FORMULATION

Governing Equations

A schematic sketch of the problem studied and the rectangular Cartesian coordinate
axes x1; x2; x3 used to describe deformations of the FG plate are shown in Figure 1.
It is assumed that the plate occupies the region O ¼ ½0; a� � ½0; b� � ½�h=2; h=2� in the
unstressed reference configuration. The midsurface of the plate is denoted by
S ¼ ½0; a� � ½0; b� � f0g, and the boundary of S by G. The plate is made of isotropic

Table 1 Comparison of the MLPG method and the FEM for an elastodynamic

problem

MLPG FEM

Weak form Local Global

Information needed about

nodes

Locations only Locations and connectivity

Subdomains Circular=rectangular, not

necessarily disjoint

Polygonal and disjoint

Basis functions Complex and difficult to

express in closed form

Simple polynomials

Integration rule Higher order Lower order

Satisfaction of essential

boundary conditions

Requires extra effort Easy to enforce

Mass=stiffness matrices Asymmetric, large band width

that can not be determined

apriori, not necessarily

positive semidefinite

Symmetric, banded, mass

matrix positive definite,

stiffness matrix positive

definite after imposition of

essential boundary conditions

Sum of elements of

mass matrix

Not necessarily equal to the

total mass of the body

Equals total mass of the body

Assembly of equations Not required Required

Stresses=strains Smooth everywhere Good at integration points

Locking phenomenon for

constrained problems

No Yes

Addition of nodes Easy Difficult

Determination of time step

size for stability in an

explicit algorithm

Difficult, requiresdetermination

of the maximum frequency of

the structure

Relatively easy

Computation of the total

strain energy of the body

Difficult Relatively easy

Imposition of continuity

conditions at interfaces

between two materials

Requires either consideration in

the generation of basis

functions or the use of

Lagrange multipliers

Easy to implement

Data preparation effort Little Extensive
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materials with the macroscopic response also isotropic and material properties
varying only in the thickness ðx3Þ direction.

In the absence of body forces and sources of internal energy, transient ther-
moelastic deformations of an isotropic plate are governed by

sij;j ¼ r€uui; �qi;i ¼ rc _TT in O; t > 0; i; j ¼ 1; 2; 3 ð1Þ

sij ¼ lekkdij þ 2meij � bdijT qj ¼ �kT;j; in O; t > 0 ð2Þ

eij ¼ ðui;j þ uj;iÞ=2 in O; t > 0 ð3Þ
where r is the stress tensor; r the mass density; q the heat flux; c the specific heat; e the
infinitesimal strain tensor; u the displacement; T the change in temperature from that
in the stress-free reference configuration; a comma followed by j indicates partial
differentiation with respect to xj; a superposed dot indicates partial differentiation
with respect to time t; a repeated index implies summation over the range of the index;
x gives the position of a material particle; d is the Kronecker delta; l and m are Lamé
constants; b ¼ 3Ka is the stress–temperature coefficient; K is the bulk modulus; a is
the coefficient of thermal expansion; and k is the thermal conductivity. Material
parameters l; m; b; r; c; and k are smooth functions of x3. Equation (1)1 expresses
the balance of linear momentum, and Eq. (1)2 the balance of internal energy. Equa-
tion (2)1 is Hooke’s law and Eq. (2)2 the Fourier law of heat conduction. Henceforth,
coordinates x1; x2; and x3 of a point are denoted by x; y; and z, respectively.

Pertinent boundary and initial conditions considered are

rn ¼ fðxÞ on Gf � � h

2
;
h

2

� �
� ð0; tÞ

u ¼ �uu on Gu � � h

2
;
h

2

� �
� ð0; tÞ

rn ¼ p� on S� � ð0; tÞ
q � n ¼ h� on S� � ð0; tÞ

ð4Þ

Figure 1. Schematic sketch of the problem studied.
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T ¼ �TT on GT � � h

2
;
h

2

� �
� ð0; tÞ

q � n ¼ q̂q on Gq � � h

2
;
h

2

� �
� ð0; tÞ

uðx; y; z; 0Þ ¼ u0ðx; y; zÞ in O

_uuðx; y; z; 0Þ ¼ _uu0ðx; y; zÞ in O

Tðx; y; z; 0Þ ¼ T0ðx; y; zÞ in O

ð5Þ

where Gu and Gf are parts of the lateral boundary of the plate where displacements
and surface tractions are prescribed respectively; heat flux and temperature are
prescribed, respectively, on Gq and GT. On the top, Sþ, and the bottom, S�, surfaces
of the plate, surface tractions are prescribed as pþ and p�, respectively, and the heat
flux as hþ and h�, respectively. The initial displacement, velocity, and temperature
are prescribed as u0ðx; y; zÞ, _uu0ðx; y; zÞ, and T0ðx; y; zÞ, respectively. Instead of
boundary condition (4)4, one could also have

Tðx; y; z; tÞ ¼ T �ðx; y; z; tÞ on S� � ð0; tÞ ð6Þ

Substitution from Eqs. (2) and (3) into Eq. (1) yields field equations for the
displacement u and the temperature T. These equations are one-way coupled in the
sense that the field equation for T does not involve u but that for u involves T. Thus,
the temperature field can be found first, and then displacements can be computed.

Brief Review of the Compatible HOSNDPT

We give details of the compatible HOSNDPT for the case of surface tractions and
the heat flux prescribed on the top and the bottom surfaces. When temperature is
assigned on these two surfaces, then the expansion for the temperature field should
be modified as given by Qian and Batra [38].

By using Legendre polynomials in z orthonormalized byZ h=2

�h=2

LiðzÞLjðzÞ dz ¼ dij ð7Þ

we write

uðx; y; z; tÞ ¼
uðx; y; z; tÞ
vðx; y; z; tÞ
wðx; y; z; tÞ

8><
>:

9>=
>; ¼

XK
i¼0

uiðx; y; tÞ
viðx; y; tÞ
wiðx; y; tÞ

8><
>:

9>=
>;LiðzÞ

Tðx; y; z; tÞ ¼
XK
i¼0

Tiðx; y; tÞLiðzÞ

ð8Þ
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In Eq. (7), dij is the Kronecker delta. Expansions (8) for the unknown fields have
been used by Mindlin and Medick [39], who attributed them to W. Prager, Batra and
Vidoli [24], and Batra et al. [40]. When K � 3, the plate theory is called higher order.
Equation (8) elucidates that both transverse normal and transverse shear deforma-
tions are being considered. Expressions for L0ðzÞ;L1ðzÞ; . . . ;L5ðzÞ are given in the
Appendix. Since LiðzÞ is a polynomial of degree i in z, L0

iðzÞ ¼ dLi=dz can
be written as

L0
iðzÞ ¼

XK
j¼0

dijLjðzÞ ð9Þ

where dij are constants.
For infinitesimal deformations, strains e and temperature gradient g are given by

e ¼

exx
eyy
ezz
2eyz
2ezx
2exy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼
XK
i¼0

@uiðx;yÞ
@x

@viðx;yÞ
@yPK

j¼0

wjðx; yÞ dji

@wiðx;yÞ
@y þ

PK
j¼0

vjðx; yÞ dji

@wiðx;yÞ
@x þ

PK
j¼0

ujðx; yÞ dji
@viðx;yÞ

@x þ @uiðx;yÞ
@y

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

LiðzÞ �
XK
i¼0

fZigLiðzÞ ð10Þ

g ¼
@T=@x

@T=@y

@T=@z

8><
>:

9>=
>; ¼

XK
i¼0

@Ti

@x

@Ti

@yPK
j¼0

djiTj

8>>>><
>>>>:

9>>>>=
>>>>;
LiðzÞ ¼

XK
i¼0

fxigLiðzÞ

where for i ¼ 0; 1; 2; . . . ;K; Zi and xi are six-dimensional and 3D vectors, respectively,
with components given by

Zið1Þ ¼
@ui
@x

Zið2Þ ¼ @vi=@y Zið3Þ ¼
XK
j¼0

djiwj

Zið4Þ ¼
@wi

@y
þ
XK
j¼0

vjdji Zið5Þ ¼ @wi=@xþ
XK
j¼0

uj dji

Zið6Þ ¼
@vi
@x

þ @ui
@y

xið1Þ ¼
@Ti

@x
xið2Þ ¼

@Ti

@y
xið3Þ ¼

XK
j¼0

djiTj

ð11Þ
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Since dij 6� 0, the transverse normal and the transverse shear strains for K >1 depend
on displacements u0; v0;w0; u1; v1;w1; . . . ; uK�1; vK�1;wK�1, and the transverse
temperature gradient depends on T0;T1; . . . ;TK�1. Using constitutive relations (2),
stresses and the heat flux at a point x ¼ ðx; y; zÞ are given by

r ¼ fsxx syy szz syz szx sxygT ¼ Du
e �DtT

q ¼ fqx; qy; qzgT ¼ jg
ð12Þ

where Du is the matrix of elastic constants, Dt the matrix of stress-temperature
moduli, and j the matrix of thermal conductivity. The plate has been assumed to be
initially stress free. Substitution from Eqs. (10) and (11) into Eq. (12) gives stresses
and the heat flux at the point ðx; y; zÞ in terms of displacements, in-plane gradients of
displacements, the temperature, and the in-plane gradients of temperature at the
point ðx; yÞ on the midsurface S.

We omit here derivation of the plate equations, which are given by Batra and
Vidoli [24] for a piezoelectric plate based on the mixed variational principle of Yang
and Batra [41], and by Batra et al. [40] for an elastic plate based on the Hellinger–
Reissner principle.

It follows from Eq. (8) that

_uuðx; y; z; tÞ ¼
_uuðx; y; z; tÞ
_vvðx; y; z; tÞ
_wwðx; y; z; tÞ

8<
:

9=
; ¼

XK
i¼0

_uuiðx; y; tÞ
_vviðx; y; tÞ
_wwiðx; y; tÞ

8<
:

9=
;LiðzÞ ð13Þ

and a similar expression holds for €uu. Knowing _uuðx; y; z; 0Þ; _uuiðx; y; 0Þ; _vviðx; y; 0Þ, and
_wwiðx; y; 0Þ can be computed from Eq. (13) by multiplying both sides with LjðzÞand
integrating the resulting expression with respect to z from �h=2 to h=2. One can
similarly compute uiðx; y; 0Þ; viðx; y; 0Þ; wiðx; y; 0Þ; and Tiðx; y; 0Þ from uðx; y; z; 0Þ
and Tðx; y; z; 0Þ.

WEAK FORMULATION OF THE PROBLEM

Let ~uu, ~vv, ~ww, and ~TT be linearly independent functions defined on O. Like u, v, w, and T
in Eq. (2), ~uu, ~vv, ~ww, and ~TT are expanded in terms of Legendre polynomials in z.
Multiplying the three equations (1)1 expressing the balance of linear momentum in
x; y; and z directions by ~uu; ~vv; and ~ww, respectively, adding the three resulting
equations, and using the divergence theorem, we obtainZ

O
~««Tr dO�

Z
@O

~uuTrn dSþ
Z
O
r~uuT€uu dO ¼ 0 ð14Þ

Similarly, Eq. (1)2 givesZ
O
rc _TT ~TTdOþ

Z
O
~ggTq dO�

Z
@O

~TTq � n dS ¼ 0 ð15Þ
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where ~ee is the six-dimensional strain vector derived from the displacement
~uu ¼ ð~uu;~vv; ~wwÞ, ~gg is the gradient of the temperature field ~TT, and @O is the boundary of
O. Substitution from Eqs. (10), (12), (4), and (5) into Eqs. (14) and (15), and
integration with respect to z from �h=2 to h=2, give

XK
i; j¼0

Z
S

f~uuigT½mij�f€uujg dSþ
Z
S

f~ZZig
T½Eu

ij �fZjg dS�
Z
Gu

f~uuigT½N�½Eu
ij �fZjg dG

� �

¼
XK
i¼0

Z
Gf

f~uuigTf�ffig dGþ Li � h

2

� �Z
S

f~uuigTf�pp�i g dS
" #

þ
XK
i; j¼0

Z
S

f~ZZig
T½Et

ij�fTjg dSþ
Z
Gu

f~uuigT½N�½Et
ij�fTjg dS

� �
ð16Þ

XK
i; j¼0

Z
S

f ~TTigT½hij�f _TTjg dSþ
Z
S

f~xxigT½‘ij�fxjg dS�
Z
GT

f ~TTigT½N�½‘ij�fTjg dG
� �

¼
XK
i¼0

Z
Gq

f ~TTigTf�qqig dGþ Li � h

2

� �Z
S

f ~TTigTf�hh�i g dS
" #

ð17Þ

where

mij ¼
Z h=2

�h=2

rLiLj dz ½Eu
ij � ¼

Z h=2

�h=2

½Du�LiLj dz f�ffig ¼
Z h=2

�h=2

LiðzÞffg dz

½Et
ij� ¼

Z h=2

�h=2

½Dt�LiLj dz hij ¼
Z h=2

�h=2

rcLiLj dz

‘ij ¼
Z h=2

�h=2

kLiLj dz �qqi ¼
Z h=2

�h=2

LiðzÞq̂q dz

½n� ¼
nx 0 0 0 nz ny

0 ny 0 nz 0 nx

0 0 nz ny nx 0

2
64

3
75

ð18Þ

and nx; ny; and nz are components of n along x; y; and z axes, respectively. Note
that for 0 � i; j � K, ½mij� is a 3ðKþ 1Þ � 3ðKþ 1Þ matrix, ½Eu

ij� and ½Et
ij� are

6ðKþ 1Þ � 6ðKþ 1Þ and 6ðKþ 1Þ � ðKþ 1Þ matrices, ½‘ij� and ½hij� are
ðKþ 1Þ � ðKþ 1Þmatrices, and ½N� is a 3ðKþ 1Þ � 6ðKþ 1Þmatrix derived from ½n�.
In the Galerkin formulation of the problem, f~uuig and f ~TTig are usually taken to
vanish on Gu and GT, respectively. However, in the MLPG formulation, it is not
necessary to do so since essential boundary conditions are imposed either by the
penalty method or by the elimination of the corresponding degrees of freedom or by
the method of Lagrange multipliers.

When r; c; k; Du; and Dt vary only through the thickness of the FG plate,
then matrices mij; Eu

ij; Et
ij; hij; and ‘ij are independent of the x and y coordinates.

TRANSIENT THERMOELASTIC DEFORMATIONS 713



IMPLEMENTATION OF THE MLPG METHOD

Semidiscrete Formulation

Let M nodes be placed on S, and S1;S2; . . . ;SM be smooth 2D closed regions

enclosing nodes 1; 2; . . . ;M respectively such that [M
a¼1Sa ¼ S;S1;S2; . . . ;SM need

not be of the same shape and size, and the intersection of any two or more of them

need not be empty. Let f1;f2; . . . ;fN and c1;c2; . . . ;cN be linearly independent
functions defined on Sa. For a Kth-order plate theory there are 3ðKþ 1Þ unknown
displacements u0; u1; . . . ; uK and Kþ 1 unknown temperatures T0;T1; . . . ;TK at a
point in Sa. We write these as 3ðKþ 1Þ- and ðKþ 1Þ-dimensional arrays fug and
fTg, respectively, and set

fuðx; y; tÞg ¼
XN
J¼1

½fu
Jðx; yÞ�fdJðtÞg f~uuðx; yÞg ¼

XN
J¼1

½cu
Jðx; yÞ�f~ddJg ð19Þ

fTðx; y; tÞg ¼
XN
J¼1

½ft
Jðx; yÞ�ftJðtÞg f ~TTðx; yÞg ¼

XN
J¼1

½ct
Jðx; yÞ�f~ttJg ð20Þ

where, for each value of J; fdJg and ftJg are 3ðKþ 1Þ- and ðKþ 1Þ-dimensional
arrays, and ffu

Jg and ½ft
J� are square matrices of 3ðKþ 1Þ and ðKþ 1Þ rows,

respectively; similar remarks apply to f~uug; ½cu
J�; f~ddJg; f ~TTg; ½ct

J�, and f~ttJg. Note that
dJ and tJ vary with time t. The 3ðKþ 1Þ � 3ðKþ 1Þ matrix ffu

Jg and the
ðKþ 1Þ � ðKþ 1Þ matrix ½ft

J� can be divided into Kþ 1 submatrices each of size
3� 3ðKþ 1Þ and 1� ðKþ 1Þ, respectively. The ith submatrix of ½fu

J� is given by

½ith submatrix of fu
J� ¼

0 0 0
0 0 0
0 0 0

zfflfflfflfflffl}|fflfflfflfflffl{0

. . .

. . .

. . .

fu
J 0 0
0 fu

J 0
0 0 fu

J

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{i

. . .

. . .

. . .

0 0 0
0 0 0
0 0 0

zfflfflfflfflffl}|fflfflfflfflffl{K
2
66664

3
77775 ð21Þ

Note that the location of the 3� 3 diagonal matrix fu
JI, where I is a 3� 3 unit

matrix, depends on the value of i. For example, for i ¼ 0;fJI occupies the first three
rows and columns of ½fu

J�; for i ¼ 2, the second three rows and columns, and so
forth. The ith submatrix of ½ft

J� is a 1� ðKþ 1Þ matrix with ft
J in the ith column and

zeros elsewhere. The analog of unknowns fdJg and ftJg are the nodal displacements
and the nodal temperatures in the FEM. However, in the MLPG method, fdJg and
ftJg do not generally equal nodal displacements and nodal temperatures, respec-
tively. Substitution from Eqs. (19) and (20) into Eq. (11) gives

fZg ¼
XN
J¼1

½Bu
J�fdJg f~ZZg ¼

XN
J¼1

½ ~BBu
J�f~ddJg fxg ¼

XN
J¼1

½Bt
J�ftg f~xxg ¼

XN
J¼1

½ ~BBt
J�f~ttg

ð22Þ
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where fZg is a 6ðKþ 1Þ-dimensional array, ½Bu� is a 6ðKþ 1Þ � 3ðKþ 1Þ matrix
which can be divided into ðKþ 1Þ submatrices each of size 6� 3ðKþ 1Þ, and ½Bt

J� is a
3ðKþ 1Þ � ðKþ 1Þ matrix that can be divided into ðKþ 1Þ submatrices each of size
3� ðKþ 1Þ. The ith such submatrices of ½Bu� and ½Bt� are given by

½ith submatrix of Bu
J� ¼

0 0 0

0 0 0

0 0 fu
Jd0i

0 fu
Jd0i 0

fu
Jd0i 0 0

0 0 0

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{0

. . .

. . .

. . .

. . .

. . .

. . .

@fu
J=@x 0 0

0 @fu
J=@y 0

0 0 fu
Jdii

0 fu
Jdii @fu

J=@y

fu
Jdii 0 @fu

J=@x

@fu
J=@y @fu

J=@x 0

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{i

. . .

. . .

. . .

. . .

. . .

. . .

0 0 0

0 0 0

0 0 fu
JdKi

0 fu
JdKi 0

fu
JdKi 0 0

0 0 0

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{K
2
66666666666664

3
77777777777775

ð23Þ

½ith submatrix of Bt
J� ¼

0
0

ft
Jd0i

zfflffl}|fflffl{0

. . .

. . .

. . .

@ft
J=@x

@ft
J=@y

ft
Jdii

zfflfflfflfflffl}|fflfflfflfflffl{i

. . .

. . .

. . .

0
0

ft
JdKi

zfflfflffl}|fflfflffl{K2
66664

3
77775

where the repeated index i in dii is not summed. The matrices ½ ~BBu

J� and ½ ~BBt

J� are
obtained from ½Bu

J� and ½Bt
J� by substituting cu

J for fu
J, and ct

J for ft
J, respectively.

We now replace the domain of integration S in Eqs. (16) and (17) by Sa;
substitute for fZg; f~ZZg; fug; f~uug; fxg; f~xxg; fTg, and f ~TTg from Eqs. (19), (20), and
(22); require that the resulting equation hold for all choices of f~ddg and f~ttg; and
arrive at the following system of coupled ordinary differential equations (ODEs):

XN
J¼1

ð½Ku
IJ�fdJg þ ½Mu

IJ�f€ddJgÞ ¼ fFu
I g

XN
J¼1

ð½Kt
IJ�ftJg þ ½Mt

IJ�f _ttJgÞ ¼ fFt
Ig ð24Þ

where

½Ku
IJ� ¼

Z
Sa

½ ~BBu
I �
T½Eu�½Bu

J�
� �

dS�
Z
Gau

½cu
I �
T½N�½Eu�½Bu

J�
� �

dG

�
Z
Ga0

½cu
I �
T½N�½Eu�½Bu

J�
� �

dG

fFu
I g ¼

Z
Ga f

½cI�
Tf �ffig dGþ Lið�h=2Þ

Z
Sa

½cI�
Tfp�g dS

þ
XN
J¼1

� Z
S

½ ~BBI�T½Et�½ft
J�ftJg dS�

Z
Gu

fcu
Ig

T½N�½Et�fft
JgftJg dG

� ð25Þ

TRANSIENT THERMOELASTIC DEFORMATIONS 715



½Mu
IJ� ¼

Z
Sa

½cu
I �
T½m�½fu

J� dS ½Mt
IJ� ¼

Z
Sa

½ct
I�
T½h�½ft

J� dS

½Kt
IJ� ¼

Z
Sa

½ ~BBt
J�
T½‘�½Bt

J� dS�
Z
GaT

fct
Ig

T½N�½‘�fft
JgdG

fFt
Ig ¼

Z
Gqa

f~cctgTf�qqig dGþ Li � h

2

� �Z
Sa

f~cctgTfh�g dS

and where Ga0 ¼ @Sa � Gau � Gaf;Gau ¼ @Sa \ Gu;Gaf ¼ @Sa \ Gf. The matrix ½Ku
IJ� is

usually called the stiffness matrix, ½Mu
IJ� the mass matrix, fFu

I g the load vector, ½Mt�
the heat capacity matrix, ½Kt� the thermal stiffness matrix, and fFtg the thermal load
vector. For the MLPG formulation, ½Mu�; ½Mt�; ½Ku�, and ½Kt� need not be symmetric
and ½Ku� and ½Kt� may not be positive definite even after essential boundary
conditions have been imposed. Equations like Eq. (24) are derived for each
Sa ða ¼ 1; 2; . . . ;MÞ. Initial conditions on fdJg and ftJg are obtained by substituting
from Eqs. (19), (20), and (5) into Eq. (13) and following the procedure outlined after
Eq. (13). For u0 ¼ 0 ¼ _uu0 and T0 ¼ 0; fdJð0Þg; f _ddJð0Þg, and ftJð0Þg are null matrices.
Essential boundary conditions in Eq. (4) are satisfied by following the procedure
outlined in the section Matrix Transformation Technique for Satisfying Essential
Boundary Conditions.

In order to complete the formulation of the problem, we now describe briefly the
moving least squares (MLS) approximation (see [42] for details) for finding basis
functions ffJg, and the technique to impose essential boundary conditions.

Brief Description of the MLS Basis Functions

In the MLS method, the approximation f hðx; y; tÞ of a scalar-valued function
fðx; y; tÞ defined on Sa is written as

f hðx; y; tÞ ¼
Xm
j¼1

pjðx; yÞajðx; y; tÞ ð26Þ

where

pTðx; yÞ ¼ f1; x; y; x2; xy; y2; . . .g ð27Þ

is a complete monomial in ðx; yÞ having m terms. For complete monomials of
degrees 1; 2, and 3, m ¼ 3; 6, and 10, respectively. The unknown coefficients
a1; a2; . . . ; am are functions of x ¼ ðx; yÞ and time t, and are determined by
minimizing R defined by

R ¼
Xn
i¼1

Wðx� xiÞ½pTðxiÞaðx; tÞ � f̂fiðtÞ�2 ð28Þ
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where f̂fiðtÞ is the fictitious value at time t of f at the point ðxi; yiÞ, and n is the number
of points in the domain of influence of x for which the weight functionWðx� xiÞ > 0.
We take

Wðx� xiÞ ¼ 1� 6 di
rw

� �2

þ 8 di
rw

� �3

� 3 di
rw

� �4

0 � di � rw

0 di � rw

(
ð29Þ

where di ¼ jx� xij is the distance between points x and xi, and rw is the size of the
support of the weight functionW. Thus, the support ofW is a circle of radius rw with
center at the point xi.

The stationarity of R with respect to aðx; tÞ gives the following system of linear
equations for the determination of aðx; tÞ:

AðxÞaðx; tÞ ¼ BðxÞ̂ffðtÞ ð30Þ

where

AðxÞ ¼
Xn
i¼1

Wðx� xiÞpTðxiÞpðxiÞ

BðxÞ ¼ ½Wðx� x1Þpðx1Þ; Wðx� x2Þpðx2Þ; . . . ;Wðx� xnÞpðxnÞ�
ð31Þ

Substitution for aðx; tÞ from Eq. (30) into Eq. (26) gives

f hðx; tÞ ¼
Xm
j¼1

fjðxÞf̂fjðtÞ ð32Þ

where

fkðxÞ ¼
Xm
j¼1

pjðxÞ½A�1ðxÞBðxÞ�jk ð33Þ

may be considered as the basis functions of the MLS approximation. It is clear that
fkðxjÞ need not equal the Kronecker delta dkj. In order for the matrix A, defined by
Eq. (31)1, to be invertible, the number n of points in the domain of influence of xmust
at least equal m. For a 2D elastodynamic problem, Batra and Ching [43] used Gauss
weight functions, the complete set of quadratic monomials, and rw ¼ 3:5 times the
distance to the third node nearest to the node at xi. Thus, rw and the locations of
nodes in Sa and, hence, Smust be such that n satisfies the required constraint. We take

rw ¼ sfhi ð34Þ
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where hi is the distance from node i to its nearest neighbor and sf is a scaling
parameter. We set cJ ¼ Wðx� xJÞ with rw ¼ hJ. Thus, the support of cJ is a
circle centered at xJ and radius equal to the distance from xJ to the nearest node.

Matrix Transformation Technique for Satisfying Essential
Boundary Conditions

We use the matrix transform technique to satisfy essential boundary conditions. In
this subsection, the dependence on time is not explicitly indicated. Let D and I
denote, respectively, the set of nodes where x displacements are and are not pre-
scribed; a similar procedure is used for y and z displacements, and the thermal
boundary condition. Writing the x displacements of all nodes as fug, we have

fug ¼ uD
uI

� 	
¼ fDD fDI

fID fII

� �
dD
dI

� 	
ð35Þ

Solving the first of these equations for dD, we obtain

fdg ¼ dD
dI

� 	
¼ f�1

DDuD
0

� 	
þ �f�1

DDfDI

I

� �
fdIg ð36Þ

where 0 and I are the null and the identity matrices, respectively. Substitution from
Eq. (36) into Eq. (24)1 and the premultiplication of the resulting equation by

�c�1
DDcDI

I

� �T

give

XN
J¼1

ð½ �KKu
IJ�fdJg þ ½ �MMu

IJ�f€ddJgÞ ¼ f �FFu
I g ð37Þ

where

½ �KKu
IJ� ¼

�c�1
DDcDI

I

" #T

½Ku
IJ�

�f�1
DDfDI

I

" #

½ �MMu
IJ� ¼

�c�1
DDcDI

I

" #T

½Mu
IJ�

�f�1
DDfDI

I

" #

f �FFu
I g ¼ �c�1

DDcDI

I

" #T

fFu
I g �

�c�1
DDcDI

I

" #T

½Ku
IJ�

f�1
DDuD

0

( )

� �c�1
DDcDI

I

" #T

½Mu
IJ�

f�1
DD€uuD

0

( )
ð38Þ
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Numerical Integration of ODEs

Equations (24)2 are integrated for the ficticious nodal temperatures ftg by the
Crank–Nicolson or the central-difference method. Equations (24)1 are then in-
tegrated with respect to time by the Newmark family of methods. In the Newmark
family of methods, displacements dtþDt and velocities _dd

tþDt
at time tþ Dt are related

to their values at time t by

d
tþDt ¼ d

t þ Dt _dd
t þ ðDtÞ2

2
ðð1� 2bÞ€ddt þ 2b€dd

tþDtÞ

_dd
tþDt ¼ _dd

t þ Dtðð1� gÞ€ddt þ g€dd
tþDtÞ

ð39Þ

where parameters b and g control the accuracy and the stability of the integration
scheme and Dt is the uniform time increment. The Newmark family of methods is
unconditionally stable if

g � 1

2
and b � 1

4

1

2
þ g

� �2

ð40Þ

and second-order accurate for g ¼ 1=2 only; otherwise it is first-order accurate. Here
we use g ¼ 0:5 and b ¼ 0:25; thus, the integration scheme is unconditionally stable
and nondissipative. However, the time-step size influences the accuracy of the
computed solution.

ESTIMATION OF EFFECTIVE MATERIAL PROPERTIES

We assume that inclusions and the matrix are made of isotropic materials, inclusions
are randomly distributed, and the macroscopic response of the composite can be
modeled as isotropic. Vel and Batra [11] have shown that the Mori–Tanaka [6] and
the self-consistent techniques [7] give different results for a simply supported FG
plate loaded on the top surface. The emphasis here is to demonstrate the applic-
ability of the HOSNDPT and the MLPG method to analyze transient thermoelastic
problems for inhomogeneous bodies. Thus the use of a particular homogenization
technique is less critical. We use the Mori–Tanaka method for its simplicity. It
accounts approximately for the interaction among neighboring inclusions and is
generally applicable to regions of the graded microstructure that have a well-defined
continuous matrix and a discontinuous particulate phase.

Let subscripts 1 and 2 denote values of a quantity for phases 1 and 2, respec-
tively. Thus, V1 and V2 ¼ 1� V1 equal volume fractions of phases 1 and 2,
respectively. The effective mass density, r, and the effective heat capacity, rc, are
given exactly by the rule of mixtures:

r ¼ r1V1 þ r2V2; rc ¼ r1c1V1 þ r2c2V2 ð41Þ
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According to the Mori–Tanaka method [6], the effective shear modulus m and the
effective bulk modulus, K ¼ lþ 2m=3, are given by

K� K1

K2 � K1
¼ V2

1þ ð1� V2ÞðK2 � K1Þ=ð3K1 þ 4m1Þ
m� m1
m2 � m1

¼ V2 1þ ð1� V2Þ
ðm2 � m1Þ
ðm1 þ f1Þ

� �
 ð42Þ

where

f1 ¼ m1ð9K1 þ 8m1Þ=ð6ðK1 þ 2m1ÞÞ ð43Þ

The effective thermal conductivity k [44] and the effective coefficient of thermal
expansion a [45] are given by

k� k1
k2 � k1

¼ V2

1þ ð1� V2Þðk2 � k1Þ=3k1
ð44Þ

a� a1
a2 � a1

¼ 1=K� 1=K1

1=K2 � 1=K1
ð45Þ

The through-the-thickness variation of V2 is assumed to be given by

V2 ¼ V�
2 þ ðVþ

2 � V�
2 Þ

1

2
þ z

h

� �p

ð46Þ

Figure 2. Thirteen uniformly spaced nodes in the x1 and x2 directions.
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where superscripts þ and � signify, respectively, values of the quantity on the top
and the bottom surfaces of the plate, and the parameter p describes the variation of
phase 2; p ¼ 0 and 1 correspond to uniform distributions of phase 2 with volume
fractions Vþ

2 and V�
2 , respectively.

COMPUTATION AND DISCUSSION OF RESULTS

A computer code has been developed based on the aforestated MLPG formulation
and the HOSNDPT. It has been validated by comparing the computed solution with
the analytical results for elastostatic deformations, free and forced vibrations, and
transient heat conduction in an FG plate. Here we analyze transient thermoelastic
deformations of an FG plate. Vel and Batra [12] have recently given an analytical
solution for transient heat conduction but quasi-static mechanical deformations of

Figure 3. For the case of the steady heat conduction with the temperature prescribed on the top surface of

the plate, comparison with the analytical solution [11] of the presently computed through-the-thickness

variation of (a) the centroidal deflection and (b) the axial stress at the centroid of the top surface. Parts (c)

and (d) compare the variation with the exponent p of the centroidal deflection and the axial stress at the

centroid of the top surface.
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an FG plate. We first compare our results with those of Vel and Batra, and then give
results for transient thermomechanical deformations.

Boundary conditions imposed on the simply supported (S) and clamped (C)
edges of an FG plate are

S : sxx ¼ 0 v ¼ w ¼ 0 T ¼ 0 on x ¼ 0; a

syy ¼ 0 u ¼ w ¼ 0 T ¼ 0 on y ¼ 0; b ð47Þ

C : u ¼ v ¼ w ¼ T ¼ 0 on x ¼ 0; a y ¼ 0; b

Hereafter we use S to denote a simply supported edge and not the midsurface of the
plate. Equations ð47Þ1;2 do not simulate well boundary conditions encountered in a
laboratory where rollers or sharp edges are used to support a plate. However,

Figure 4. For the temperature prescribed on the top surface, comparison with the analytical solution of

Vel and Batra [11] of the presently computed (a) centroidal temperature, and (b) heat flux at the centroid

of the bottom surface. Parts (c) and (d) exhibit the variation with Vþ
2 of the centroidal deflection and the

axial stress at the centroid of the top surface.
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analytical solutions are available for these boundary conditions. Batra and Geng
[46, 47] have simulated the roller boundary conditions in their 3D FE analysis of
large deformations of a hybrid piezoelectric plate.

Previous studies [23, 48, 49] of thick homogeneous and FG plates have indicated
that a fifth-order shear and normal deformable plate theory (i.e., K ¼ 5) and the
following values of different variables in the MLPG formulation yield results that
match very well with the analytical solution of the corresponding problem:

m ¼ 15 sf ¼ 15 N ¼ 13� 13 ¼ 169 NQ ¼ 9� 9 ¼ 81 ð48Þ

That is, fourth degree complete monomials are used to generate the MLS basis
functions, 13 uniformly spaced nodes are used both in the x and the y directions
(Figure 2), 81 quadrature points are employed to evaluate area integrals in Eq. (25),
and 9 quadrature points are used to evaluate line integrals in Eq. (25). Thus, for a

Figure 5. For temperature prescribed on the top surface of the plate, and for p ¼ 2 and 5 through-the-

thickness variation of (a) deflection and (b) the axial stress; corresponding results for Vþ
2 ¼ 0:6; 0:8, and

1.0 are depicted in (c) and (d).
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free plate with temperature and displacements prescribed no where, the total number
of degrees of freedom equals 4� 6� 169 ¼ 4;056.

For the square aluminum=silicon carbide FG plate of aspect ratio h=a ¼ 0:2, the
following values are assigned to material and geometric parameters:

a ¼ b ¼ 250 mm h ¼ 50 mm

Al: r1 ¼ 2707 kg=m3 c1 ¼ 896 J=kgK k ¼ 233 W/mK

E1 ¼ 70 GPa n1 ¼ 0:3 a1 ¼ 23:4� 10�6=K

SiC: r2 ¼ 3100 kg=m3 c2 ¼ 670 J=kgK k ¼ 65 W/m K

E2 ¼ 427 GPa n2 ¼ 0:17 a2 ¼ 4:3� 10�6=K

ð49Þ

Figure 6. For heat flux prescribed on the top surface, and three values of Vþ
2 , through-the-thickness

variation of (a) the centroidal deflection and (b) the axial stress on the centroidal axis.
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Since the problem analyzed is linear, thermal and mechanical loads can be
considered separately. Furthermore, a given load can be expanded in terms of
Fourier series in the x and y directions. Thus, it suffices to consider the following
spatial variation of the thermal loads on the top and the bottom surfaces of the plate.
The thermal load increases exponentially in time to its steady-state value.

a. Temperature prescribed on the major surfaces of the plate:

Tðx; y; h=2; tÞ ¼ Tþ
0 ð1� e�gtÞ sin px

a
sin

py
b

on z ¼ h=2

Tðx; y;�h=2; tÞ ¼ 0 on z ¼ �h=2
ð50Þ

Results are presented in terms of following nondimensional variables:

�TT ¼ T

Tþ
0

�qq ¼ � qh

k1Tþ
0

�ww ¼ 100hw

a1Tþ
0 a

2
�ssxx ¼ 10sxx

E1a1Tþ
0

ð51Þ

Figure 7. For p ¼ 2 and 5, and heat flux prescribed on the top surface, variation with Vþ
2 of the deflection

of the centroids of (a) the top, (b) the bottom surfaces, and (c, d) the axial stress at these points.
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The reference length and the reference stress nondimensionalizing displace-
ments and stresses, respectively, equal the axial elongation of a free aluminum
bar of length a and magnitude of the axial stress induced in this bar
clamped at the edges caused by the temperature rise of Tþ. For aluminum
and Tþ

0 ¼ 100K, these quantities respectively equal 0.585mm and
63.8MPa.

b. Heat flux prescribed on major surfaces of the plate:

Figure 8. For Vþ
2 ¼ 1:0, p ¼ 2, g ¼ 1=s, and temperature prescribed on the top surface of

the plate, comparison of the presently computed time histories of the centroidal deflection and

the axial stress at the plate centroid with those obtained from the analytical solution of Vel and

Batra [12].
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q3ðx; y; h=2; tÞ ¼ qþ0 ð1� e�gtÞ sin px
a
sin

py
b

on z ¼ h=2

q3ðx; y;�h=2; tÞ ¼ 0 on z ¼ �h=2
ð52Þ

In the figures, the following nondimensional variables are used:

�TT ¼ Tk1

qþ0 h
�ww ¼ 100k1w

a1qþ0 a
2

�ssxx ¼
10k1sxx
E1a1aqþ0

ð53Þ

Thus, the reference value of the temperature equals the temperature difference across
an aluminum bar of length h caused by the steady-state heat flux of qþ through it.
The reference values of the displacement and the stress equal the elongation of a free
bar of length a and the magnitude of the axial stress developed in such a clamped bar
with the heat flux qþ0 applied across the faces. For qþ0 ¼ 106 W=m2, a value typical

Figure 9. For Vþ
2 ¼ 1:0, g ¼ 1=s, p ¼ 2 and 5, and temperature prescribed on the top surface of the plate

time histories of the centroidal deflection for (a) simply supported and (b) clamped edges; the axial stress at

the centroid of the top surface for the two types of boundary conditions is depicted in (c) and (d).
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for laser heating, the reference temperature, displacement, and stress equal, respec-
tively, 214.6K, 6.28mm, and 176MPa.

Steady-State Heat Conduction

Temperature prescribed on the top surface. Results from the present method are
compared with those from the analytical solution of Vel and Batra [11] in Figures
3a–3d. It is clear that the two sets of values of through-the-thickness variations of the
centroidal deflection and the axial stress match with each other. Also, variations,
with the exponent p in Eq. (46), of the centroidal deflection and the axial stress at the
centroid of the top surface computed from the present method match very well with
those obtained analytically [11]. The transverse displacement of the centroid of the
top surface is nearly twice that of the centroid of the bottom surface, signifying an
average transverse normal strain of 731� 10�6 for Tþ ¼ 100 K, and is proportional
to ða=hÞ2. The magnitude of the maximum compressive stress induced in the plate
occurs at a point near the bottom surface of the plate and equals nearly nine times

Figure 10. For Vþ
2 ¼ 1:0, p ¼ 2, g ¼ 0:1=s, and 1:0=s, and temperature prescribed on the top surface of the

plate, time histories of the centroidal deflection for (a) simply supported and (b) clamped edges; the axial

stress at the centroid of the top surface for the two types of boundary conditions is depicted in (c) and (d).
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the tensile axial stress at the centroid of the top surface of the plate. An increase in
the value of p in Eq. (46) results in a lower value of the volume fraction of SiC at a
point. Results of Figure 3c imply that the centroidal deflection increases with an
increase in the value of p, and the nondimensional axial stress at the top surface of
the plate changes from �3:5 for p ¼ 1 to 5.8 for p ¼ 6. Results plotted in Figures 4a
and 4b evince that the centroidal temperature and the heat flux at the centroid of the
bottom surface computed by the two methods for various values of Vþ

2 and the
exponent p match very well. For p ¼ 2 and 5, Figures 4c and 4d evince the variation
with Vþ

2 of the centroidal deflection and the axial stress at the centroid of the top
surface. Because of the lower thermal conductivity of SiC, a higher value of Vþ

2

results in a lower value of the centroidal temperature and the centroidal heat flux in
the transverse direction. Also, the transverse displacement of the plate centroid
decreases with an increase in the value of Vþ

2 but the magnitude of the axial com-
pressive stress induced at the centroid of the top surface decreases with an increase in
Vþ

2 . The effect of varying p from 2 to 5 is less noticeable in the centroidal deflection
than in the centroidal temperature, the transverse deflection of the plate centroid and

Figure 11. For g ¼ 1=s, p ¼ 2, and Vþ
2 ¼ 0:6 and 1:0, and temperature prescribed on the top surface of the

plate, time histories of the centroidal deflection for (a) simply supported and (b) clamped edges; the axial

stress at the centroid of the top surface for the two types of boundary conditions is depicted in (c) and (d).
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the axial stress at the centroid of the top surface of the plate. For p ¼ 2 and 5, and
Vþ

2 ¼ 0:6; 0:8, and 1:0, Figures 5a–5d depict through-the-thickness variations on the
centroidal axis of the deflection and the axial stress. It is evident from the results of
Figures 5a and 5c that the average transverse normal strain is higher for p ¼ 5 than

Figure 12. For Vþ
2 ¼ 1:0, p ¼ 2, g ¼ 1:0=s, and heat flux prescribed on the top surface of the plate,

comparison of the presently computed time histories of (a) the centroidal deflection and (b) the axial stress

at the plate centroid with those from the analytical solution of Vel and Batra [12].
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that for p ¼ 2 and increases with a decrease in the value of Vþ
2 . Changing p from 2 to

5 affects more the axial stress induced at centroids of horizontal planes near the top
surface of the plate. A similar effect is noticed when Vþ

2 is varied from 0.6 to 1.0. It
should be noted that the thermal stresses are induced by the temperature gradient
and are also affected by the stress–temperature modulus.

Heat flux prescribed on the top surface. In Figures 6a and 6b, we have plotted
through-the-thickness variation of the centroidal deflection and the axial stress on
the centroidal axis of the plate for Vþ

2 ¼ 0:6; 0:8, and 1:0. For the same change in
Vþ

2 , the decrease in the magnitude of the deflection near the top surface is more than
that near the bottom surface of the plate. For each value of Vþ

2 , through-the-
thickness variation of the deflection near the bottom surface of the plate is almost
affine but that near the top surface is parabolic. The point where the magnitude of
the axial stress is a maximum shifts toward the plate centroid with an increase in the
value of Vþ

2 . The effect of changing Vþ
2 is greater on the maximum magnitude of

the axial stress than that on the magnitude of the axial stress at the centroid of either

Figure 13. For Vþ
2 ¼ 1:0, g ¼ 1=s, p ¼ 2 and 5, and heat flux prescribed on the top surface of the FG plate,

time histories of the centroidal deflection for (a) simply supported and (b) clamped edges; the axial stress at

the centroid of the top surface for the two types of boundary conditions is depicted in (c) and (d).
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the top or the bottom surfaces of the plate. The variations with Vþ
2 of the deflection

of the centroids of the top and the bottom surfaces, and of the axial stress at these
points, are depicted in Figures 7a–7d. The most noticeable effect of changing p from
2 to 5 is on the magnitudes of the axial stress at the centroids of the top and bottom
surfaces of the plate. For Vþ

2 ¼ 1:0 the nondimensional axial stress at the centroid of
the top surface changes from 1.75 to �1:5 when p is increased from 2 to 5; that at the
centroid of the bottom surface goes from �1:2 to �3:5. For p ¼ 5, the axial stress at
the centroid of the top surface changes parabolically from �1:4 to 1.75 as Vþ

2 is
increased from 0 to 1, and that at the centroid of the bottom surface remains
essentially constant at �2:8 for 0 � Vþ

2 � 0:25 and then varies parabolically to �1:2
for Vþ

2 ¼ 1:0. The qualitative nature of the dependence on Vþ
2 of the deflections of

the centroids of the top and bottom surfaces is the same; however, for p ¼ 2 the
deflection of the centroid of the top surface goes from 1 for Vþ

2 ¼ 0 to �3:2 for
Vþ

2 ¼ 1:0 but that of the centroid of the bottom surface changes from 3.0 for Vþ
2 ¼ 0

to �8:5 for Vþ
2 ¼ 1:0. Thus, the average transverse normal strain induced in the plate

is more for Vþ
2 ¼ 1:0 than that for Vþ

2 ¼ 0:0.

Figure 14. For Vþ
2 ¼ 1:0, p ¼ 2, g ¼ 0:1=s and 1:0=s, and heat flux prescribed on the top surface of the

plate, time histories of the centroidal deflection for (a) simply supported and (b) clamped edges; the axial

stress at the centroid of the top surface for the two types of boundary conditions is depicted in (c) and (d).
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Transient Heat Conduction

Results presented in this section are without the effects of inertia forces: quasi-static
mechanical problems with transient heat conduction are analyzed.

Temperature prescribed on the top surface. For Vþ
2 ¼ 1:0, p ¼ 2, and g ¼ 1=s, we

have compared in Figures 8a and 8b the presently computed time histories of the
centroidal deflection and the axial stress at the plate centroid with those of the
analytical solution of Vel and Batra [12]. It is clear that the two sets of results agree
with each other. Note that the peak centroidal deflection is nearly 50% more than
the steady-state value and the maximum magnitude of the axial stress is four times its
steady-state value. For g ¼ 1=s the magnitude of the axial stress at the plate centroid
reaches its peak value at t ’ 1:5 s but the centroidal deflection becomes maximum at
t ’ 3:0 s. For p ¼ 2 and 5 we have plotted in Figures 9a and 9b the time history of the
centroidal deflection for an FG plate with simply supported and clamped edges.
These plots show that the qualitative nature of results is unaffected by the edge
conditions. However, the peak centroidal deflection for the clamped edges is nearly

Figure 15. For g ¼ 1=s, p ¼ 2, and Vþ
2 ¼ 0:6 and 1.0, and heat flux prescribed on the top surface of the

plate, time histories of the centroidal deflection for (a) simply supported and (b) clamped edges; the axial

stress at the centroid of the top surface for the two types of boundary conditions is depicted in (c) and (d).
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one-third of that for the case of simply supported edges. For a clamped FG plate the
peak centroidal deflection is nearly 2.2 times the steady-state value, and for a simply
supported FG plate this ratio is about 1.5. The time histories of the axial stress at the
top surface of the plate centroid plotted in Figures 9c and 9d reveal that the steady-
state value will give an incorrect estimate of the magnitude and the sign of the peak
axial stress. For a simply supported plate, and p ¼ 5, the steady-state value of the
nondimensional axial stress equals about 4 but is compressive when plate
deformations are varying with time; the magnitude of the maximum compressive

Figure 16. For a clamped FG plate subject to a transient temperature and an oscillatory pressure field on

the top surface only, time history of (a) the centroidal deflection, and (b) the axial stress at the centroid of

the top surface.
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stress equals 3.5. For the clamped FG plate, the axial stress stays compressive and
the ratio of the steady-state value to the peak value equals 0.8 and 0.55 for p ¼ 2 and
5, respectively. For p ¼ 2, the maximum compressive axial stress induced in the
clamped FG plate is nearly 50% more than that in a simply supported plate.

The effect of the rate of increase of the prescribed temperature on the centroidal
deflection and the axial stress at the centroid of the top surface of the plate is
exhibited in Figures 10a–10d. For g ¼ 0:1=s, it takes 10 times longer for the pre-
scribed temperature on the top surface to reach a certain value as compared to that
for g ¼ 1:0=s. Results plotted in Figure 10 evince that the peak centroidal deflection
and the maximum compressive stress induced at the centroid of the top surface of the
plate are considerably higher for g ¼ 1:0=s than those for g ¼ 0:1=s. The qualitative
nature of these results is not affected by the edge conditions. Also, the steady-state
values are the same for g ¼ 0:1, and 1:0; as should be the case. Thus, increasing the
temperature suddenly will induce a considerably higher compressive axial stress than
if the temperature were gradually increased to the steady-state value. For
p ¼ 2; g ¼ 1:0=s and Vþ

2 ¼ 0:6 and 1.0, we have plotted in Figures 11a–11d the cen-
troidal deflection and the axial stress at the centroid of the top surface of the plate for
simply supported and clamped FG plates. For both types of edge conditions, a higher
value of Vþ

2 gives a lower value of the centroidal deflection and also of the maximum
compressive stress induced at the centroid of the top surface of the FG plate.

Heat flux prescribed on the top surface. We have compared in Figures 12a and 12b
the computed time histories of the centroidal deflection and the axial stress at the
centroid of the top surface of a simply supported plate with those from the analytical
solution of Vel and Batra [12]. The two sets of results virtually overlap each other.
A comparison of these results with those given in Figure 8 reveals that it takes much
longer for the centroidal deflection and the axial stress to reach their steady-state
values when heat flux is prescribed on the top surface than when the temperature is
assigned, even though both have the same rate of growth. For the case of the pre-
scribed heat flux, the magnitude of axial stress at the plate centroid continues to
increase very rapidly in the beginning and then gradually until the computational
time of 150 s. However, when the temperature is prescribed on the top surface, the
magnitude of the axial stress at the plate centroid increases quickly to its peak value,
then gradually decreases and approaches steady value at t ’ 15 s. As for the case of
the temperature prescribed on the top surface of the plate, results plotted in Figures
13a and 13b reveal that the time histories of the centroidal deflection for a simply
supported and a clamped plate look similar; however, the centroidal deflection at
t ¼ 150 s for a clamped FG plate is about 37% of that for a simply supported plate.
Both for a clamped and a simply supported FG plate, the initial centroidal deflection
is in a direction opposite to that of the final deflection. The through-the-thickness
variation of the volume fraction of SiC, as specified by the value of p, has a
noticeable effect on the time history of the axial stress at the centroid of the
top surface of the plate. For a simply supported FG plate, the axial stress is positive
for p ¼ 2, and increases monotonically to its steady-state value, but is negative for
p ¼ 5. For a clamped plate, the axial stress has the same sign for p ¼ 2 and 5. The
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steady-state value of the axial stress for p ¼ 2 is nearly four times that for p ¼ 5.
Comparison of results plotted in Figures 9 and 13 suggests that the qualitative nature
of the time histories of the centroidal deflection for simply supported and clamped
plates is the same whether the transient heat flux or the transient temperature is
prescribed on the top surface of the plate. However, the time histories of the axial
stress at the centroid of the top surface differ both qualitatively and quantitatively.

A comparison of results plotted in Figures 14a and 14b with those in Figures 10a
and 10b reveals that the value of g has a minor effect on the centroidal deflection
when heat flux is prescribed on the top surface than when the temperature is
specified. Also, the time histories of the centroidal deflection for the two types of
edge conditions are quite similar. As for the centroidal deflection, the axial stress at
the centroid of the top surface of the plate is less influenced by the value of g than
was the case with the temperature prescribed on the top surface. Also, the axial stress
and the centroidal deflection approach their steady-state values considerably slowly
in the case of the heat flux prescribed on the top surface. The effect of changing Vþ

2

from 0.6 to 1.0 on the time histories of the centroidal deflection and the axial stress
at the centroid of the top surface of the plate is exhibited in Figures 15a–15d.
The time histories are qualitatively similar for simply supported and clamped
plates. At t ¼ 150 s the centroidal deflection for Vþ

2 ¼ 0:6 is nearly one-fourth of
that for Vþ

2 ¼ 1:0 for both simply supported and clamped FG plates. Whereas the
value of Vþ

2 strongly influences the steady-state axial stress induced at the centroid of
the top surface of a simply supported plate, it has very little effect for a clamped
plate.

Transient Heat Conduction with the Consideration of Inertia Forces

Both for a simply supported and a clamped plate, and for either transient
temperature or transient heat flux prescribed on the top surface of the plate, the
computed time histories of the centroidal deflection and the axial stress at the cen-
troid of the top surface of the plate were unaffected by the consideration of inertia
forces. It is because accelerations induced by the temperature gradients are negli-
gible. Moreover, results computed with and without the consideration of inertia
forces for h=a ¼ 0:025, 0.05, 0.1, and 0.2 were identical to each other.

Combined Transient Thermal and Mechanical Loads

We now study transient thermomechanical deformations of a clamped FG plate with
Vþ

2 ¼ 1:0;V�
2 ¼ 0:0;Tþ ¼ 100 K; g ¼ 1=s, and p ¼ 2. The thermal load consists of

the temperature prescribed on the top surface of the plate and the mechanical load is
a normal pressure on the top surface given by

200 sinot sin
px
a
sin

py
b

kN=m2

with o ¼ 60 rad=s and the bottom surface kept traction free. Figures 16a and 16b
depict, respectively, the time history of the centroidal deflection and the axial stress
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at the centroid of the top surface of the plate. The oscillations in the centroidal
deflection are due to the oscillatory nature of the mechanical load. Under a pure
oscillatory mechanical load, the plate will vibrate with the frequency of the applied
load. The increase in the magnitude of the axial stress and the centroidal deflection is
due to the transient thermal load. The centroidal deflection oscillates around the
value determined by the thermal load.

In contrast to the HOSNDPT used here, Qian et al. [50] have used the MLPG
method to seek an approximate solution of equations governing the coupled static
thermoelastic deformations of an FG plate. Furthermore, they [51] have used the
MLPG method and the HOSNDPT to find the spatia compositional profile in an
FG plate with the volume fractions of constituents varying both in the x- and the
z-directions so as to optimize the first or the second natural frequency of a
clamped rectangular plate. Batra and Love [52] have employed the FEM to study
the initiation and propagation of adiabatic shear bands in a FG plate made of
tungsten and nickel-iron with their volume fractions varying in two directions. It
involves seeking a numerical solution of a transient coupled thermomechanical
problem for a thermo-elasto-viscoplastic body. Whereas in all these problems
effective material moduli of the homogenized body were used, Batra et al. [53]
have shown that the methods of Lagrange multipliers and a jump function in-
troduced by Krongauz and Belytschko [54] can be used in conjuction with the
MLPG method to study transient heat conduction in a bimetallic disk. These
techniques satisfactorily account for the jump in the normal derivative to
temperature to ensure that the heat flux at the interface between two different
materials is continuous. For an anisotropic FG graphite/epoxy rectangular plate
with fiber orientation varying continuously through the plate thickness, Batra
and Jin [55] have scrutinized the dependence of first few natural frequencies upon
through-the-thickness variation of the fiber orientation. Instead of the MLPG
method used here, one could also use the modified smoothed particle hydro-
dynamics (MSPH) method to analyze the transient coupled thermomechanical
deformations of a plate; e.g. see [56,57].

CONCLUSIONS

We have analyzed transient thermomechanical deformations of an FG thick plate
loaded by either a thermal load or a combined thermal and mechanical load on the
top surface. The edges of the plate may be either simply supported or clamped. The
problem is studied by using an HOSNDPT and an MLPG method. For the case of
transient temperature prescribed on the top surface of the plate, the centroidal
deflection for a clamped plate is nearly one-third of that for a simply supported
plate, and the maximum magnitude of the axial stress induced at the centroid of the
top surface is nearly 40% larger than that for a simply supported plate. For the same
time rate of change of the thermal load, steady values of the centroidal deflection and
the axial stress are reached much later when heat flux is prescribed than when
temperature is prescribed.
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APPENDIX

Expressions for the orthonormalized Legendre polynomials L0ðzÞ; L1ðzÞ; . . . ;L5ðzÞ
are
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