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We analyze three-dimensional finite coupled thermomechanical deformations of a rectangu-

lar plate with two parallel notches placed symmetrically about the horizontal centroidal

plane of the plate. The edge surface of the plate between the two notches is struck by a cyl-

indrical projectile of diameter equal to the distance between the notches and made of the

same material as the plate. The plate material is modeled as heat-conducting, microporous,

elastoviscoplastic, and isotropic. Both the brittle and the ductile failures initiate at points

adjoining the notch-tip surface that are on the midplane of the plate and propagate toward

the outer surfaces. Even for a relatively thin plate, the difference in the times of initiation of

failures on the mid and front surfaces is significant. Also the two failure modes on the mid

surface initiate much later than that predicted by the plane strain analysis. Thus an experi-

mentalist observing fracture on the front or the back face of the plate will see it initiate

much later than the times given by the plane strain analysis of the problem. For a steel plate,

it is found that the failure mode transitions from brittle to ductile at an impact speed of

about 21.8m=s.

Keywords: Brittle and ductile failures; Coupled thermomechanical problem; Finite element solution;

Impact load; Three-dimensional deformations

Kalthoff [1] summarized his experimental studies on transient deformations of a
prenotched maraging steel plate with the axes of the two notches parallel to the
top and the bottom edges of the plate; see Figure 1. The edge surface between
the two notches is struck by a cylindrical projectile of diameter equal to the
distance between the notches. With an increase in the impact speed, the failure
mode transitioned from brittle failure in the form of a crack to ductile failure in
the form of an adiabatic shear band (ASB). Numerical analyses of the problem
are presented in refs. [2]–[10]. Of these nine works, eight [3–9] analyzed plane strain
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deformations of the prenotched plate, and the one by Batra and Ravisankar [2]
scrutinized three-dimensional (3-D) deformations of the plate and the projectile
by using the finite-element (FE) computer code DYNA3D. The code neglects
effects of heat conduction, thermal expansion, and porosity evolution on thermo-
mechanical deformations of a body. Furthermore, it assumes stresses and tempera-
ture to be uniform within an eight-node brick element since it employs one-point
integration rule. Also, Batra and Ravisankar [2] did not find the failure-mode tran-
sition speed. Batra and Jaber [7, 8] analyzed plane strain deformations and
accounted for heat conduction, thermal expansion, and the porosity evolution.
They assumed that a brittle failure initiates at a point when the maximum principal
tensile stress there equals 2.34 times the quasistatic yield stress of the material, and
the ductile failure in the form of an ASB initiates at a point when the effective
stress there has dropped to 90% of the peak effective stress at that point while
the material point is deforming plastically. They employed four constitutive rela-
tions, namely, the Johnson–Cook, the Batra–Litonski, the Bodner–Partom, and
a power law. Each one of these was calibrated against the same test data by solv-
ing an initial-boundary-value problem closely resembling the experimental setup.
Batra and Jaber [7] found that the four constitutive relations gave qualitatively
similar deformations around the notchtip but predicted different failure mode

Figure 1 Schematic sketch of the problem studied.
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transition speeds. A similar result had been obtained earlier by Batra and Kim [11],
who found that these four constitutive relations predicted different times of
initiation of an ASB and also different postlocalization deformations. In a sub-
sequent study, Batra et al. [9] analyzed the effect of the shape of the notch tip,
and the presence of circular holes ahead of a circular notch tip. For an elliptic
notch tip with the major axis aligned parallel to the notch axis, the brittle failure
preceded the ductile failure for the six impact speeds studied, and for a blunt or a
circular notch tip the failure mode transitioned from the brittle to the ductile with
an increase in the impact speed. Batra et al. also examined the effect of the pres-
ence of a circular hole ahead of a circular notch tip and found that it shifted,
toward the axis of the notch, the point on the notch-tip surface where an ASB
initiated.

An experimental setup similar to that of ref. [1] has been employed by Mason
et al. [12], Zhou et al. [13], and Ravi-Chandran et al. [14]. For the impact speeds and
the notch-tip radius used in ref. [13], only a shear band initiated from a point on the
notch surface, propagated into the plate, got arrested and then a crack initiated from
the shear band tip. Zhou et al. [13] stated that the differences between their and
Kalthoff’s observations were due to the variation in material properties of the two
steels tested. Ravi-Chandran et al. [14] examined experimentally failure modes in
asymmetrically loaded prenotched plates made of two polymers, polycarbonate
(PC) and polymethylmethacrylate (PMMA). With an increase in the impact speed,
PC exhibited a transition from ductile to brittle failure at about 29m=s, and a second
transition from brittle to ductile failure as the impact speed was increased beyond
55m=s. The second transition resulted in a shear band near the crack tip. No
failure-mode transition occured in PMMA because of its inability to undergo large
inelastic tensile deformations.

Here we analyze 3-D thermomechanical deformations of the plate and
account for the effects of heat conduction, thermal expansion, and porosity evol-
ution on the failure-mode transition speed. Also, results from the 3-D solution
are compared with those from the plane strain analysis of the problem. The present
work differs from that of ref. [2] in the following respects. Here we consider heat
conduction, porosity evolution due to the effective plastic strain exceeding a critical
value, degradation of material parameters due to porosity evolution, and thermal
stresses developed due to temperature gradients. Furthermore, stresses and the ef-
fective plastic strain at nodes are taken as unknowns in the numerical solution of
the problem. We also compute the failure-mode transition speed, which was not
determined in ref. [2]. An additional result is the propagation in the thickness
direction of the brittle failure originating from a point slightly away from the notch
surface but on the mid surface of the plate.

The article is organized as follows. The next section gives the problem formu-
lation, and the third section the semidiscrete formulation. The computational tech-
nique is briefly described in the fourth section, which also lists the failure criteria
and gives results for two FE meshes. Effects of porosity evolution and thermal stres-
ses are delineated in the fourth and sixth subsection, respectively, and the failure-
mode transition speed is listed in the fifth subsection. The seventh subsection
compares results from the 3-D and the plane strain (2-D) simulations. Conclusions
are summarized in the final section.
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FORMULATION OF THE PROBLEM

A schematic sketch of the problem studied is shown in Figure 1. We neglect the
effect of body forces and sources, if any, of the internal energy and employ the
Lagrangian or the referential description of motion to describe deformations of
the body. In the absence of body forces and sources of internal energy, thermom-
echanical deformations of the prenotched plate and the cylindrical projectile are
governed by the following balance of mass (1), the balance of linear momentum
(2), the balance of moment of momentum (3), and the balance of internal energy (4).

½qð1� f ÞJ�� ¼ 0 ð1Þ

q0ð1� f0Þ _vv ¼ Div T ð2Þ

TF ¼ FTTT ð3Þ

q0ð1� f0Þ _ee ¼ �Div Qþ trðT _FF
T Þ ð4Þ

Here q is the present mass density, f the porosity (i.e., the volume fraction of
voids), J ¼ det F; F ¼ Grad x (the deformation gradient), x the present position
at time t of a material particle located at the place X in the reference configur-
ation, Grad (grad) the gradient operator with respect to coordinates in the refer-
ence (present) configuration, Div the divergence operator, tr the trace operator, T
the first Piola–Kirchhoff stress tensor, e the specific internal energy, Q the present
heat flux measured per unit reference area, v the velocity of a material particle,
and a superimposed dot indicates the material time derivative. Some of the equa-
tions that follow are written with respect to rectangular Cartesian coordinate
axes; in these equations a repeated index implies summation over the range of
the index.

We assume that the material is isotropic, the plate is homogeneous, and the
strain-rate tensor D defined by 2D ¼ grad v þ ðgrad vÞT has the additive decompo-
sition into an elastic part De and a plastic part Dp, viz.,

D ¼ De þ Dp ð5Þ

Equations (1)–(5) are supplemented with the following constitutive relations:

_rrij þ rikWkj � rjkWik ¼
Eð1� f Þ
1þ n

De
ij þ

Eð1� f Þn
ð1þ nÞð1� 2nÞ ðD

e
kk � a _hhÞdij ð6Þ

_ee ¼ c _hhþ 1

qð1� f Þ rijD
e
ij ð7Þ

Tia ¼ JrijðF�1Þaj ð8Þ
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qi ¼ �j 1� 3

2
f

� �
h;i; Qa ¼ JqiðF�1Þai ð9Þ

/ � r2e
r2y

� 1þ 2f �b1 cosh
3b2�pp
2ry

� �
� b21ðf �Þ
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3

2
r0ijr

0
ij; i; j ¼ 1; 2; 3 ð10Þ

Dp
ij ¼ _kk

@/
@rij
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3r0ij
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� f �b1b2
ry

sinh
b2�pp
2ry

� �
dij

" #
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p ¼ �ðr11 þ r22 þ r33Þ=3; �pp ¼ pHð�p� 0Þ ð12Þ
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ð1� f Þry _eepe

rij
@/
@rij
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8><
>: ð13Þ

_ff ¼ ð1� f ÞDp
ii þ

f2 _ee
p
e

s2
ffiffiffiffiffiffi
2p

p e
� 1

2
epe�en
s2

� �2

Hð�p� 0Þ ð14Þ

f � ¼
f ; f � fc

fc þ
fu � fc
ff � fc

ð f � fcÞ; f > fc

8><
>: ð15Þ

ry ¼ Aþ Bðepe Þ
n� �

1þ C ln
_eepe
_eep0

� �� 	
1� h� hr

hm � hr

� �m� 	
ð16Þ

The left-hand side of Eq. (6) equals the Jaumann derivative of the Cauchy stress
tensor r, Wij ¼ ðvi;j � vj;iÞ=2 is the spin tensor, E Young’s modulus, n Poisson’s
ratio, a the coefficient of thermal expansion, dij the Kronecker delta, c the specific
heat, s the thermal relaxation time, j the thermal conductivity of the solid
material, and h the present temperature of a material particle. Batra and Jaber
[7] found that the Jaumann and the Green–Naghdi stress rates in Eq. (6) give vir-
tually identical results for a shear band originating from a notch tip in a pre-
notched plate. / ¼ 0 describes the yield surface proposed by Gurson [15] for a
porous material, p is the hydrostatic pressure, and f � the modified value of the
porosity given by Eq. (15). Constants b1 and b2, introduced by Tvergaard [16],
provide a better fit of results computed from a FE analysis of the formation of
ASBs in a plate having an array of large cylindrical voids with test observations,
and _kk is the factor of proportionality defined by Eq. (13); _kk > 0 only when the
material point is deforming plastically. ry is the current yield stress of the
material, whose dependence upon the effective plastic strain epe , the effective
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plastic strain rate _eepe , and the temperature h is described by the Johnson–Cook [17]
relation through Eq. (16) in which A; B; C; _eep0, and m are material parameters, hr
the room temperature and hm the melting temperature of the material. Parameters
B and n characterize the strain hardening of the material, C and _eep0 the strain-rate
hardening, and the last factor on the right-hand side of Eq. (16) its thermal
softening. Equation (14) gives the evolution of the porosity; the first term on its
right-hand side is derived by assuming that the matrix is incompressible and the
elastic dilatation is negligible as compared to the plastic dilatation, and the second
term is the strain-based nucleation of voids introduced by Chu and Needleman
[18]. Constants f2, s2, and en are material parameters; the rate of nucleation of
voids is highest when epe equals en and decays exponentially with the difference bet-
ween epe and en. H is the Heaviside step function. Thus the second term contributes
to the evolution of the porosity at a point only when the hydrostatic pressure
there is tensile. To account for the coalescence of neighboring voids, Tvergaard
and Needleman [19] enhanced the porosity, as given by Eq. (15), after it reaches
its critical value fc. In Eq. (15), ff is the porosity at ductile fracture, and fu ¼ 1=b1
is the porosity when the yield surface has shrunk to a point. Equations (10) and
(16) imply that the radius of the von Mises yield surface increases due to strain-
and strain-rate hardening of the material but decreases due to the softening
induced by the temperature rise and the increase in porosity. The degradation
of material properties due to the damage, taken here synonymous with the poro-
sity, is indicated by Eq. (6) through (10). The affine variation with the porosity of
Young’s and the bulk moduli implies that the rule of mixture has been employed
to find the effective moduli. The interaction, if any, among neighboring voids has
been tacitly ignored. The shrinkage of the yield surface due to an increase in
porosity described by Eq. (10) can be appreciated by plotting the yield surface
for two different values of f while keeping other variables fixed. Perzyna [20]
has given a different equation for the evolution of porosity.

Initial and boundary conditions needed to complete the formulation of the
problem are:

xðX; 0Þ ¼ X; vðx; 0Þ ¼ 0; hðX; 0Þ ¼ hr; qðX; 0Þ ¼ q0;

epe ðX; 0Þ ¼ 0; f ðX; 0Þ ¼ f0ðXÞ
TN ¼ 0 on Ct; x ¼ �xx on Cv; Q �N ¼ 0 on @X

ð17Þ

That is, the plate is initially at rest, the initial temperature is uniform hr, and the
initial mass density is uniform q0. Here N is an outward unit normal to the surface
@X, and A � B denotes the inner product between vectors A and B. The part Ct of the
boundary @X of the region X occupied by the body in the reference configuration is
traction free and positions of material particles on Cv are given as a function of time.
Ct and Cv have been taken to be disjoint for simplicity. Boundary conditions involv-
ing the prescription of linearly independent components of TN and x at the same
point on @X are admissible. The entire boundary @X is thermally insulated at all
times; it is reasonable to assume so since time durations of interest are of the order
of 100 ms and there is not much heat transferred through the boundaries under
ordinary conditions.
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Substitution from Eqs. (5), (7), and (9) into (4) gives the following parabolic
heat equation:

q0ð1� f0Þc _hh ¼ Div j 1� 3

2
f

� �
Grad h

� �
þ J trðrDpÞ ð18Þ

The term trðrDpÞ equals the heating due to plastic working; thus the Taylor–
Quinney parameter has been set equal to 1. Except for a delay in the time of
initiation of an ASB, other results remain unaffected by a lower value of the
Taylor–Quinney factor.

Let q0, _eeR, Lc, r0, and hR be the reference mass density, the reference strain rate
ð¼V0=LcÞ, the reference length, the reference stress, and the reference temperature
used to nondimensionalize quantities. Then in terms of nondimensional variables
indicated by the same symbols as before, Eqs. (2) and (18) become

aIð1� f0Þ _vv ¼ Div T; ð19Þ

ð1� f0Þ _hh ¼ �at Div 1� 3

2
f

� �
Grad h

� 	
þ J trðrDpÞ ð20Þ

where

aI ¼
q0 _ee

2
RL

2
c

r0
; at ¼

j
q0cL2

c _eeR
; hR ¼ r0

q0c
ð21Þ

and aI and at are nondimensional measures of inertia and heat conduction. Thus, for
a given material, inertia effects are directly proportional to the square of the refer-
ence strain rate and the square of the reference length, and heat conduction effects
are inversely proportional to the reference strain rate and the square of the reference
length.

In order to reduce the problem size, we do not analyze deformations of the pro-
jectile and replace its action on the prenotched plate by prescribing the normal
component of velocity on the smooth impacted surface of the plate. The normal
velocity is taken to increase linearly with time from 0 to 0:9V0 in 5 ms and then
stay steady at 0:9 V0; V0 is the speed of the projectile. It approximates the average
normal velocity of plate particles on the impacted surface computed by Batra and
Ravisankar [2] from their 3-D analysis of deformations of the projectile and the
plate. The time is reckoned from the instant of impact. As noted by Ravi-Chandar
et al. [14], a one-dimensional analysis of impact between two bodies having unequal
areas at the contact surface reveals that the normalized axial velocity imparted to a
plate particle equals ð1þ Ap=ArÞ�1 ¼ 0:861. Here Ap and Ar are, respectively, the
impacted area of the plate and the area of cross section of the projectile. Thus the
one-dimensional (1-D) analysis gives a good approximation of the maximum speed
of plate particles on the impacted face but provides no information of the rise time.

For a 100-mm-long steel projectile striking at normal incidence the edge of a
100-mm-wide steel plate, the two will separate at t ’ 34 ms. Since results have been
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computed for t < 34 ms, the separation between the projectile and the plate has not
been considered. After separation, the impacted face of the plate will be traction free.
Thus boundary conditions on it will need to be modified; e.g., see ref. [10].

SEMIDISCRETE FORMULATION OF THE PROBLEM

Equations (5), (6), (8), and (3) imply that the balance of moment of momentum
expressed by Eq. (3) is identically satisfied. The present mass density can be com-
puted from Eq. (1) if the deformation gradient and the current value of the porosity
are known. Thus, the dependent variables to be solved for are x, f , and h and the
independent variables are X and t. Equation (19) is a set of three second-order
coupled nonlinear hyperbolic partial differential equations for x, and Eq. (20) is a non-
linear parabolic partial differential equation for h. These can not be written explicitly in
terms of x and h since T is given by Eq. (8) and _rr by Eq. (6), which involves Dp and h.
We solve the problem numerically by the finite-element method (FEM).

Let w1;w2; . . . ;wn be the FE basis functions defined on X. We write

vi ¼
Xnodes
A¼1

wAðXÞ~vvAiðtÞ; wi ¼
Xnodes
A¼1

wAðXÞcAi; h ¼ wAðXÞ~hhAðtÞ; i ¼ 1; 2; 3 ð22Þ

Here ~vv is the vector of velocities of nodes, ~hh the vector of nodal temperatures, w the
vector of virtual velocities or test functions, and c the vector of arbitrary constants.
Taking the inner product of both sides of Eq. (19) with w, integrating both sides of
the resulting equation over the domain X occupied by the body in the reference con-
figuration, using the divergence theorem on the right-hand side, requiring that w
vanish wherever v or x is prescribed, substituting for TN from Eq. (17)7, and noting
that the final equation thus obtained must hold for all choices of c, we get Eq. (23)1.
A similar procedure applied to Eq. (20) gives Eq. (23)2; for example, see ref. [22].

M _~vv~vv ¼ �Fint; H _hh ¼ Fh þ ~QQ ð23Þ

where

MAB ¼
Z
X
aI ð1� f0ÞwAwB dX; F int

Ai ¼
Z
X
wA;aTia dX

HAB ¼
Z
X
ð1� f0ÞwAwB dX; F h

A ¼
Z
X
at 1� 3

2
f

� �
h;awA;a dX

~QQA ¼
Z
X
wAJ trðrDpÞ dX

ð24Þ

Note that the natural boundary condition of zero heat flux has been embedded in
Eq. (24)5.

We solve Eq. (16) for _eepe in terms of ry; epe , and h and derive its weak form in
the same way as before except that the divergence theorem is not used. Recall that
_eepe > 0 only when a material point is deforming plastically as signified by the satisfac-
tion of Eq. (10)1; otherwise, _eepe ¼ 0. Weak forms of Eqs. (6), (14), and _xx ¼ vðX; tÞ are
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also derived. We thus get coupled nonlinear ordinary differential equations

_dd ¼ F ð25Þ

where d is the vector of unknowns and F is the force vector that depends upon time t
and dðtÞ. The 15 unknowns at a node are fx1; x2; x3; v1; v2; v3; r11; r22; r33;
r12; r23; r31; f ; h; epeg, and the dimension of vector d equals 15 times the number of
nodes.

COMPUTATION AND DISCUSSION OF RESULTS

The FE mesh is comprised of nonuniform eight-node brick elements. Note that
the aforementioned Galerkin approximation of the problem incorporates the natural
boundary conditions of surface tractions and the heat flux and results in a system of
coupled ordinary differential equations (ODEs) for the nodal positions, the nodal
velocities, the nodal temperatures, the nodal stresses, the nodal porosities, and the
nodal effective plastic strain rates. The mass of each element remains unchanged dur-
ing the deformation process; thus the mass matrix needs to be computed only once.
The domain integrals are evaluated by using the 2� 2� 2 Gauss quadrature rule.
Boundary conditions on velocity are enforced by modifying the mass matrix and
the force vector. The ODEs are integrated with respect to time t by using the sub-
routine LSODE that adaptively adjusts the time-step size to compute the solution
within the prescribed tolerance. Our approach is similar to that of Batra and Jin
[21], with the difference that we use total Lagrangian description of motion and they
employed the updated Lagrangian.

Because of the symmetry of the problem about the horizontal and the vertical
centroidal planes, deformations of one-quarter of the plate are analyzed.

When computing results we assigned following values to various material and
geometric parameters: q0 ¼ 7;850 kg=m3, E ¼ 196GPa, n ¼ 0:29, A ¼ 792:2MPa,
_ee0 ¼ 1=s, B ¼ 0:643A; n ¼ 0:26, m ¼ 1:03, C ¼ 0:014; hm ¼ 760	C, hr ¼ 25	C;
h ¼ d ¼ 50mm reference length ¼ 100 mm; plate thickness ¼ 6:35mm, notch-tip
radius ¼ 0:15 mm; plate dimensions ¼ 100 mm� 200mm; V0 ¼ 50 m=s; b1 ¼ 1:5;
b2 ¼ 1:0; f2 ¼ 0:04; s2 ¼ 0:1; r0 ¼ A; en ¼ 0:5; fc ¼ 0:15; fu ¼ 2=3; ff ¼ 0:25.

These values are for 4340 steel, with the exception of the melting temperature,
which is taken to be low so that an ASB will initiate sooner and computations will
take less CPU time.

Computed results can not be compared with those of Kalthoff [1], since he only
listed the Rockwell hardness number of the steel plate.

Code Validation

The validity of the code was established by solving the problem analyzed earlier
by Batra and Ravisankar [2] with DYNA3D. The same FE mesh with half of the
plate thickness divided into 10 layers of equal thicknesses was employed. Results
computed from the present code by neglecting effects of heat conduction, thermal
expansion, and porosity evolution matched very well with those of ref. [2]. For
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identical FE meshes, DYNA3D predicted that an ASB will initiate at t ¼ 24 ms, and
our code gave t ¼ 23:84 ms; the ASB initiation criterion is given in the next subsec-
tion. However, no brittle failure ensued when the problem was analyzed with
DYNA3D, but it initiated at 29:68 ms according to the present code.

The average speeds of propagation of an ASB in the axial (plate-thickness)
direction according to results from DYNA3D and the present code equal 440m=s
and 372m=s, respectively. As shown in Figure 8 of ref. [2], the ASB speed according
to results from the present code decreased as it propagated axially from the midsur-
face to the front face from 1984m=s to 104m=s. Also in agreement with the results
from DYNA3D, the angular position of the point of initiation of the ASB in surfaces
1 (midsurface) through 9 remained the same but it was different on surfaces 10 and
11 (front or back face). In the absence of crack opening, the brittle failure propa-
gated axially from surface 1 to surface 7 (with x1 ¼ 1:5875mm) at an average speed
of 945m=s. We note that the crack speed in the two-dimensional (2-D) simulations
was found to be 1.68 km=s [10]. Also, the opening of a crack due to brittle failure
noticeably delayed the initiation of ductile failure.

We note that the CPU time required to solve the problem with DYNA3D is
much less than that taken by our code. This is because of 3 degrees of freedom per

Figure 2 Discretization into finite elements of the region near the notch tip in the X2X3 plane.
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Figure 3 Time histories, computed with the two FE meshes, of the evolution of the effective plastic strain

at one point (a) on the impacted face of the plate, and two points on the surface of the notch tip.
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node in DYNA3D and 15 in the present code, 1 integration point in DYNA3D and 8
in the present code, and the neglect of heat conduction in DYNA3D but not in the
present code. However, artificial viscosity is used in DYNA3D to eliminate spurious
modes but not in the present code. The time-step size in DYNA3D is proportional to
the smallest time taken by a dilatational wave to propagate through an element but is
adaptively adjusted in the present code in order to compute the solution within the
prescribed accuracy. The consideration of heat conduction requires that the time step
be smaller of those needed to compute a stable solution of the mechanical and the
thermal problems. The time step drops significantly once an ASB has initiated.

Other differences between DYNA3D and our code are summarized next.
DYNA3D neglects heat conduction, porosity evolution, and thermal stresses, and
integrates constitutive relation (6) and the balance of internal energy at an inte-
gration point, i.e., the centroid of an element. Our code accounts for heat conduc-
tion, porosity evolution, and degradation of material parameters due to porosity,
and also takes temperature, stresses, the porosity and the effective plastic strain at
nodes as variables. Although the temperature and stresses are taken to be uniform
within an element in DYNA3D they are assumed to vary in the present code.

Another code frequently used for the analysis of thermoviscoplastic problems
is ABAQUS explicit. To the best of our knowledge, effects of heat conduction,
thermal expansion, and porosity evolution are also neglected in this code.

Figure 3 Continued.
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Figure 4 Variation of the effective plastic strain at points on the notch tip surface at time t ¼ 32ms.

Figure 5 Variation of the temperature at points on the notch tip surface at time t ¼ 32 ms.
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Failure Criteria

Brittle failure is assumed to ensue at a material point when the maximum prin-
cipal tensile stress there equals 2.34 times the quasistatic yield stress of the material.
The initiation of ductile failure at a point is taken to be synonymous with the initiation
of an ASB. Batra and Kim [23], based on their numerical experiments on simple shear-
ing deformations of 12 materials, have proposed that an ASB initiates at a material
point when the maximum shear stress there has dropped to 80% of the peak shear
stress at that point and the material point is deforming plastically. For the 3-D problem
studied here, we found it more convenient to use the following strain-based criterion.
For the 4340 steel, an ASB is taken to initiate at a point when the effective plastic strain
there reaches 0.6 and it is deforming plastically. This value was deduced from Batra
and Ravisankar’s [2] analysis of 3-D deformations of the prenotched 4340 steel plate.

Effect of FE Mesh

Results have been computed for two FE meshes that differ mainly in the region
around the notch tip where severe deformations occur. The discretization into finite
elements of the midsurface near the notch tip for one of these meshes is depicted in
Figure 2. In mesh 1 the region near the notch tip is divided into finer elements than
that in mesh 2. In each case, the half-thickness of the plate is divided into 10 layers

Figure 6 Variation of the maximum principal stress at points on the notch tip surface at time t ¼ 32 ms.
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Figure 7 At time t ¼ 32 ms, fringe plots in the reference configuration of (a) the effective plastic strain and

(b) the maximum principal tensile stress at points on the notch tip surface.
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of equal thicknesses; meshes 1 and 2 have 39,952 and 31,251 nodes respectively. A finer
mesh could not be used for a lack of computational resources. For the two FE meshes,
time histories of the evolution of the effective plastic strain at three points, two of which
are on the surface of the notch tip and the third one on the impacted face, are plotted in
Figure 3a–c. It is clear that results computed with the two meshes are close to each
other signifying very small dependence of computed results on the FE mesh employed.
Results presented later have been computed with the FE mesh of 39,952 nodes.

One way to eliminate the effect of the FE mesh on computed results is to use a
strain-rate gradient-dependent viscoplastic theory such as that employed in refs.
[24]–[26]. It introduces material characteristicity lengths that can not be easily
estimated. Another possibility is to use adaptively refined FE meshes like those in
refs. [27]–[29] for one- and two-dimensional problems, or a meshless method [30].

Figure 8 Variation of the ductile failure initiation time with the axial distance x from the plate’s midsurface.

Table 1 Failure initiation times and locations

Failure mode Location Time of initiation (ms)

Ductile Midsurface 23.84

Front or back surface 31.48

Brittle Midsurface 29.68

Surface 1.588mm away from the midsurface 31.36
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Effect of Porosity Evolution

For an impact speed of 50m=s, Figure 4 exhibits the variation of the effective
plastic strain at points on the notch surface that are either on the midsurface or on
the outermost (front or back) surfaces of the plate. Note that the positive angle is
measured clockwise from the notch axis. Results were computed with and without
the consideration of the porosity evolution. These plates show that the porosity has
virtually no effect on the distribution of the effective plastic strain. This is mainly
because not enough time has elapsed for the porosity to attain a value significant
enough to soften the material. If the computations were performed for a longer
time, then the porosity would have evolved significantly at points within an
ASB (e.g., see [10]) and changed results at some locations. However, results could
not be computed for longer times because of excessive distortion of one element
adjoining the notch-tip surface. The angular variation of the effective plastic strain
at points on the midsurface of the plate differs quantitatively and qualitatively
from that at points on the outermost surfaces. Furthermore, the maximum value
of the effective plastic strain reached at a point on the midsurface of the plate
is nearly twice of that at a point on the outermost surfaces. Thus an ASB will
initiate first at a point on the midsurface of the plate and lying on the notch
tip. The angular variation of the temperature at points on the notch surface is
very similar to that of the effective plastic strain; see Figure 5. The maximum

Figure 9 Variations with the impact speed of times of initiation of the brittle and the ductile failures.
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temperature rise at a point on the notch-tip that is on the midsurface of the plate
equals 305K but that of a point either on the front or on the back surface of the
plate equals 175K.

The angular distribution of the maximum principal stress at points on the
notch surface is depicted in Figure 6. As for the effective plastic strain, the consi-
deration of porosity evolution has virtually no effect on the values of the nondimen-
sional maximum principal stress ð¼rp=r0Þ. The qualitative distributions of the
maximum principal stress on the midsurface and the front surface are similar.
The magnitudes of the tensile stresses at similarly situated points on the midsurface
and the front surface are not that much different. However, the maximum magni-
tude of the compressive principal stress at a point on the midsurface is consider-
ably higher than that at a point on the front surface of the plate.

Failure-Mode Transition Speed

Results plotted in Figures 4 and 6 reveal that an ASB will first initiate at a
point situated on the midsurface of the plate. The radial line passing through this

Figure 10 Time history of (a) the evolution of the effective stress, (b) the maximum principal tensile stress,

and (c) the effective plastic strain at selected points with and without the effects of heat conduction and

thermal expansion; the two curves in (b) and (c) essentially overlap each other.
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Figure 10 Continued.
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point makes an angle of about 50	 clockwise from the notch axis. Brittle failure
will ensue from a point on the upper surface of the notch tip and situated on
the midsurface of the plate. Fringes of the effective plastic strain on the notch sur-
face at time t ¼ 32 ms plotted in Figure 7a clearly show that the severely deformed
region is concentrated near the midsurface of the plate and that the effective plastic
strain gradually decreases as one moves toward an outermost surface of the plate.
Fringe plots of the maximum principal tensile stress are depicted in Figure 7b. It is
evident that the brittle failure has propagated only through half of the plate thick-
ness. For an impact speed V0 ¼ 50m=s, Figure 8 evinces the variation of the failure
initiation times as a function of the axial distance, x, from the midsurface of the

Figure 11 At node 540 with coordinates (0, 49.956mm, 25.256mm) in the reference configuration, time

histories of (a) the effective plastic strain, (b) the normalized maximum principal stress, and (c) the normal-

ized in-plane shear stress r23.

Table 2 Influence of thermal effects on failure initiation time (ms)

Thermal expansion and

heat conduction Ductile failure Brittle failure

Yes 23.84 29.68

No 23.76 29.12
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Figure 11 Continued.
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plate. The ductile failure at a point on the midsurface initiates at t ¼ 23:84 ms, and
at a point on the front or the back face of the plate ensues at 31:48 ms, that is,
7:64 ms later than that at the midsurface. When the computations were stopped
due to excessive distortions of an element, the brittle failure had propagated only
through half of the plate thickness. Times of initiation of the brittle failure at the
midsurface ðx ¼ 0Þ and on the notch surface with x ¼ 1:588 mm equaled 29.68 and
31:36 ms, respectively. Thus the average axial (in the thickness direction) velocities
of propagation of the ductile and the brittle failures equal 413m=s and 945m=s,
respectively. Note that no cracks are assumed to open at points where these fail-
ures initiate. Batra and Lear [10] have shown that, during plane strain deforma-
tions of the plate, the opening of a crack at the point where brittle failure
initiates delays noticeably the onset of the ductile failure. The aforestated results
are summarized in Table 1.

Figure 12 At node 1464 located at (0, 49.956mm, 25.044mm) in the reference configuration, time histories

of (a) the effective plastic strain, (b) the normalized maximum principal stress, and (c) the normalized

in-plane shear stress r23.

554 R. C. BATRA AND Z. WANG



We have plotted in Figure 9 the dependence of the times of initiation of the
brittle and the ductile failures upon the impact speed. These plots reveal that the brit-
tle failure will initiate first for impact speeds below 
21:8 m=s and the ductile failure
at impact speeds above 
21:8 m=s. The failure-mode transition speed depends upon
the notch-tip radius, the material parameters, whether deformations are modeled as
plane strain or 3-D, the failure criteria, whether or not cracks are allowed to open
and propagate, and the viscoplastic relation.

Effect of Heat Conduction and Thermal Expansion

The effect of heat conduction and thermal expansion on the time history of the
evolution of the effective stress, the effective plastic strain, and the maximum
principal tensile stress at selected points is shown in Figure 10a–c. The plots of
Figure 10a evince that the rate of drop of the effective stress is higher in the absence

Figure 12 Continued.
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of these two effects than that when they are considered. Thus the postlocalization
response of the body is noticeably influenced by the consideration of thermal effects.
Note that the two curves in Figures 10b and 10c overlap each other. The times of
initiation of the two failure modes with and without the consideration of heat con-
duction and thermal expansion are summarized in Table 2.

Even though failure initiation times are virtually unaffected by the neglect of
heat conduction and thermal expansion, the width of an ASB can only be computed
when either heat conduction or strain gradients or both are considered. Otherwise,
the ASB width is strongly influenced by the FE mesh employed and continues to
decrease with successive refinements of the FE mesh.

Comparison of Results from 3-D and Plane Strain (2-D) Simulations

In order to compare results from the 2-D and the 3-D simulations we com-
puted the 2-D solution by constraining in the thickness direction the motion of

Figure 12 Continued.
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all nodes. We have plotted in Figures 11a–c the time histories of the evolution of
the effective plastic strain, the normalized maximum principal stress and the nor-
malized in-plane shear stress r23 at node 540 with coordinates (0, 49.956mm,
25.256mm) in the reference configuration. Similar results at nodes 1464 and
1884 situated in the reference configuration at (0, 49.956mm, 25.044mm) and
(3.175mm, 49.996mm, 25.044mm) are depicted in Figures 12a–c and 13a–c, res-
pectively. Nodes 540 and 1464 are on the midsurface of the plate and node 1884
is on an outermost face. At node 540, the two time histories of evolution of each
of the three quantities computed from the 2-D and the 3-D simulations essen-
tially agree with each other for 0 � t � 0:013 (or 26 ms). For t > 0:013, the 2-D
analysis gives higher value of the effective plastic strain than the 3-D analysis.
This difference between the two values of the effective plastic strain continues
to increase with time. At nodes 1464 and 1884, there are significant differences

Figure 13 At node 1884 located at (3.175mm, 49.996mm, 25.044mm) in the reference configuration, time

histories of (a) the effective plastic strain, (b) the normalized maximum principal stress, and (c) the normal-

ized in-plane shear stress r23.
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in the two sets of values of each one of the three quantities. The failure initiation
times from the 2-D and the 3-D analyses are summarized in Table 3. It is clear
that the two analyses predict significantly different times of initiation of the duc-
tile failure. The initiation times for the brittle and the ductile failures from the
2-D analysis are about 10% and 36% less than those from the 3-D analysis. Like
the time history of evolution of the effective plastic strain, time histories of evol-
ution of the maximum (in magnitude) principal stress and the in-plane shear
stress at nodes 1464 and 1884 computed from the 2-D and the 3-D analyses differ
noticeably.

Because of significant differences in the times of initiation of failures in the
2-D and the 3-D analyses, the failure mode transition speed predicted from these
two analyses will also be quite different. Thus, unless the 2-D and the 3-D analyses
give very close results, the validity of a constitutive relation can only be established
by comparing experimental observations with results computed from the 3-D
analysis.

Figure 13 Continued.
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Viscoplastic Relation

As stated in the introduction, different viscoplastic relations calibrated to the
same test data for simple shear deformations give qualitatively similar but quanti-
tatively quite different results for ASB initiation times, the postlocalization
response, and the spacing between adjacent shear bands; for example; see refs
[7], [11], and [31].

Figure 13 Continued.

Table 3 Failure initiation time (ms) from the 3-D and the 2-D analyses

Analysis Ductile Brittle

3-D 23.84 29.68

2-D 15.20 27.12
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CONCLUSIONS

We have analyzed, by the finite-element method, three-dimensional (3-D) tran-
sient thermomechanical deformations of a heat-conducting isotropic, homogeneous,
microporous, and thermoviscoplastic prenotched plate. We have developed a com-
puter code that employs a Lagrangian mesh but adjusts the time step adaptively
in order to compute the solution within the prescribed accuracy. The problem for-
mulation includes the degradation of material properties due to porosity. It is found
that both the brittle and the ductile failures initiate at points either on or close to the
notch-tip surface and lying on the midsurface of the plate. With crack opening not
modeled, the ductile failure in the form of an adiabatic shear band propagates in the
thickness direction with speed varying from 1984m=s from the point of initiation on
the plate’s midsurface to 104m=s when it arrives at the front or the back face of the
plate. An experimentalist making observations on the outermost surfaces of the plate
will see ductile failure initiate at t ¼ 31.48 ms, but it occurred on the midsurface at
23.84 ms. For the material parameters used in this study the failure mode transitions
from brittle to ductile at an impact speed of 21.8m=s.

A comparison of results from the 3-D and the 2-D (plane strain) analyses of the
same problem reveals that an adiabatic shear band initiates much sooner in the 2-D
simulations than in the 3-D simulations. For the problem studied, these times are
15.2 ms and 23.84 ms for the 2-D and the 3-D analyses, respectively. The 2-D and
the 3-D analyses will give noticeably different failure mode transition speeds.
Because of significant differences in results from the 2-D and the 3-D analyses, it
is recommended that the validity of a constitutive relation be established by
comparing test findings with results of 3-D analyses.
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