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We analyze the initiation and propagation of adiabatic shear bands in a tungsten heavy

alloy by modeling each constituent as a heat-conducting, microporous, isotropic, elastother-

moviscoplastic material. The two constituents are assumed to be perfectly bonded to each

other so that the temperature, heat flux, displacements, and surface tractions are continuous

across an interface between a tungsten particulate and the nickel-iron matrix. Three differ-

ent modes of deformation, namely plane strain tension=compression, plane strain shear, and

axisymmetric tension=compression are analyzed. No other defects are introduced. It is

found that contours of the rate of temperature rise and=or velocity and=or the specific

energy dissipation rate rather than those of effective plastic strain delineate the shear

banded regions. For the same volume fraction of particulates smaller diameter particulates

enhance the formation of adiabatic shear bands. The time of initiation of an adiabatic shear

band also depends upon the particulate arrangement.

Keywords: Mesoscale analysis; Finite element solution; Thermoviscoplasticity; Microporous materials;

Particulate composite; Tungsten heavy alloys

An adiabatic shear band (ASB) is a narrow region, usually a few lm wide, of intense
plastic deformation that forms in most materials deformed at high strain rates. Even
though heat conduction plays a significant role during the development of an ASB, it
is termed adiabatic since there is not enough time for the heat to be conducted away
from the shear banded region. The analysis of ASBs is important because they pre-
cede ductile fracture and play an important role in penetration problems. Even
though the initiation, development and propagation of ASBs have been extensively
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studied in homogeneous materials, (e.g., see the two books by Bai and Dodd [1] and
Wright [2], the two volumes edited by Perzyna [3] and Batra and Zbib [4], the review
paper of Tomita [5], and special issues of three journals edited by Armstrong et al. [6],
Batra et al. [7], and Zbib et al. [8]), there are very few studies on ASBs in particulate
composites.

Pressure=shear plate impact experiments on a tungsten heavy alloy (WHA) have
shown that the two-phase composite is more susceptible to adiabatic shear banding
than either one of its constituents [9,10]; a similar conclusion was drawn in [11]. Bose
et al. [12], Kim et al. [13], and Wei et al. [14] have scrutinized the influence of micro-
structural details, such as the particulate shape and size, the volume fraction of parti-
culates, and their predeformation on the ASB formation in WHAs. Dick et al. [15]
have performed reverse ballistic tests on cylindrical rods of WHAs. They found that
an ASB originated from a point on the rod’s mantle where the mushroomed head
transitioned into the cylindrical portion, and propagated inwards. Tungsten grains
in the path of the ASB were severely distorted. Stevens and Batra [16] have analyzed,
by the finite element method (FEM), transient thermomechanical deformations of a
rapidly moving cylindrical WHA rod striking a stationary smooth rigid flat surface.
They modeled the rod material as homogeneous and isotropic, and found that
enhanced thermal softening of the material resulted in the formation of ASBs at
approximately the same location as that observed by Dick et al. [15]. Batra and Ste-
vens [17] have also compared the deformations of WHA and depleted uranium rods
penetrating into a rolled homogeneous armor plate with each material modeled as
homogeneous, isotropic, and thermoviscoplastic. Batra andWilson [18] studied plane
strain thermomechanical deformations of a WHA specimen with rectangular NiFe
particles randomly distributed in and perfectly bonded to the W matrix.

Zhou [19] used the FEM to study ASBs in transient coupled thermomechanical
simple shearing deformations of a heat-conducting WHA containing circular W par-
ticulates perfectly bonded to the NiFe matrix. An ASB initiated from a notch tip
introduced to simulate the collective effect of numerous microvoids and other defects
that may be present in a WHA. For a particulate composite replaced by an equiva-
lent inhomogeneous thermoviscoplastic body Batra and Love [9] and Charalambakis
and Baxevanis [20] have studied the localization of deformation into ASBs. These
works assumed that the material properties vary continuously in the body.

The analysis of ASBs in particulate composites is very challenging because of
the presence of numerous interfaces between the particulates and the matrix. The
mismatch between the thermomechanical properties of the constituents introduces
a discontinuity in the gradients of deformation and temperature. In a transient prob-
lem it also results in the reflection and refraction of waves. For perfectly bonded
interfaces, the strength of the discontinuity depends upon the mismatch between
the values of thermophysical constants of the two materials, and the particulate
shape and size. An equally challenging issue is the criterion for the initiation of an
ASB. In a homogeneous material, an ASB is assumed to initiate at a point when
the maximum shear stress there has dropped to 80% of its peak value at that point
and the material point is deforming plastically. However, in a particulate composite
even when the deformation has begun to localize at a point, the material surrounding
it may resist its propagation resulting in either that material point failing or in the
redistribution of the load and possibly delaying the onset of an ASB.

748 R. C. BATRA AND B. M. LOVE



Here we analyze transient plane strain and axisymmetric coupled thermome-
chanical deformations of a heat-conducting microporous WHA, presume that W
particulates are randomly distributed in the NiFe matrix, and are both in perfect
mechanical and thermal contact with the matrix. Numerous inhomogeneities in de-
formation introduced by the tungsten=matrix interfaces interact with each other to
determine when and where ASBs initiate. Three modes of deformation namely plane
strain tension=compression, plane strain simple shear, and axisymmetric com-
pression are analyzed.

The paper is organized as follows. Next, we give the governing equations, initial
and boundary conditions, interface conditions, semi-discrete formulation of the prob-
lem, values of material parameters, the ASB initiation criterion in a homogeneous body
and various length and time scales in the problem. Following that, we describe briefly
the computer code, how it is verified, and the effect of the FEmesh on the ASB initiation
time. Then, we describe and discuss results for the particulate composite. Effects of par-
ticulate size, particulate arrangement, and volume fraction of particulates are studied.
An equivalent homogeneous body with initial porosity distribution is found so that
an ASB will initiate at about the same time in the homogenized body and the particulate
composite. The conclusions of this study are summarized near the end of the paper.

FORMULATION OF THE PROBLEM

Governing Equations

We assume that the particulate and the matrix materials can be modeled as iso-
tropic, microporous, and elastothermoviscoplastic. We use rectangular Cartesian
coordinates and the referential description of motion to describe their finite two-
dimensional transient coupled thermomechanical deformations. Plane strain tensile,
plane strain compressive, plane strain simple shear, and axisymmetric deformations
are analyzed. Deformations of each constituent and the composite body are governed
by Eqs. (1)–(4) expressing, respectively, the balance of mass, the balance of linear mo-
mentum, the balance of moment of momentum, and the balance of internal energy.

qð1� f ÞJ ¼ q0ð1� f0Þ ð1Þ

q0ð1� f0Þ _vvi ¼ Tia;a; i; j ¼ 1; 2; 3; a ¼ 1; 2; 3 ð2Þ

TiaFja ¼ TjaFia ð3Þ

q0ð1� f0Þ _ee ¼ �Qa;a þ Tia
_FFia ð4Þ

Here q is the present mass density, f the porosity (i.e., the volume fraction of voids),
J ¼ det F, Fia ¼ xi;a ¼ @xi=@Xa the deformation gradient, x the present position at
time t of a material particle located at the place X in the reference configuration, T
the first Piola–Kirchhoff stress tensor, e the specific internal energy, Q the present
heat flux measured per unit reference area, v the velocity of a material particle, a
superimposed dot indicates the material time derivative, and a repeated index implies
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summation over the range of the index. Greek indices refer to coordinates in the ref-
erence configuration, and Latin indices to coordinates in the present configuration.
The porosity f is assumed to be uniformly distributed in each constituent, and can
be regarded as a measure of the damage.

We assume that the strain-rate tensor D defined by Dij ¼ ðvi;j þ vj;iÞ=2;
vi; j ¼ @vi=@xj, has the additive decomposition into an elastic part De, a plastic part
Dp and a thermal part âa _hh1, viz., D ¼ De þDp þ âa _hh1. Here âa is the coefficient of ther-
mal expansion, h the temperature rise, and 1 the identity tensor. Second-order ten-
sors De and Dp are presumed to be objective or frame-indifferent. Eqs. (1)–(4) are
supplemented with the following constitutive relations.

_rrij þ rikWkj þ rjkWki ¼
Eð1� f Þ
1þ n

De
ij þ

Eð1� f Þn
ð1þ nÞð1� 2nÞD

e
kkdij ð5Þ

_ee ¼ cs€hhþ c _hhþ 1

qð1� f Þ rijD
e
ij; Tia ¼ JrijðF�1Þaj ð6Þ

qi ¼ �j 1� 3

2
f

� �
h;i; Qa ¼ JqiðF�1Þai ð7Þ

/ � r2e
r2y

� 1þ 2f �b1 cosh
3b2�pp
2ry

� �
� b21ðf �Þ

2 ¼ 0; r2e ¼
3

2
r0ijr

0
ij ; i; j ¼ 1; 2; 3 ð8Þ

Dp
ij ¼ _kk

@/
@rij

¼ _kk
3r0ij
r2y

� f �b1b2
ry

sinh
3b2�pp
2ry

� �
dij

" #
; r0ij ¼ rij þ pdij ð9Þ

p ¼ �ðr11 þ r22 þ r33Þ=3; �pp ¼ pHð�p� 0Þ ð10Þ

_kk ¼
ð1� f Þry _eepe

rij
@/
@rij

; if / ¼ 0 and _// � 0

0 when either / < 0 or / ¼ 0 and _// < 0

8><
>: ð11Þ

_ff ¼ ð1� f ÞDp
ii þ

f2 _ee
p
e

s2
ffiffiffiffiffiffi
2p

p e
�1

2

epe � en
s2

� �2

Hð�p� 0Þ ð12Þ

f � ¼
f ; f � fc

fc þ fu � fc
ff�fc

(
ðf � fcÞ; f > fc ð13Þ

ry ¼ ðAþ BðepeÞ
nÞ 1þ ~CC ln

_eepe
_eep0

� �� �
1� h� hr

hm � hr

� �m� �
ð14Þ

The left-hand side of Eq. (5) equals the Jaumann derivative of the Cauchy stress ten-
sor r; Wij ¼ ðvi;j � vj;iÞ=2 is the spin tensor, E Young’s modulus, n Poisson’s ratio,
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c the specific heat, s the thermal relaxation time, j the thermal conductivity of the
solid material, and h the present temperature of a material particle. Constitutive re-
lation (5) implies that each constituent is being modeled as an isotropic hypoelastic
material. Replacing the Jaumann derivative of r by another objective stress rate will
change the constitutive description of the material. However, Batra and Jaber [21]
found that it does not alter the ASB initiation time in a homogeneous thermovisco-
plastic material. / ¼ 0 describes the yield surface proposed by Gurson [22] for a po-
rous material, p is the hydrostatic pressure, and f � the modified value of porosity
given by Eq. (13).

Gurson’s yield surface is based on quasistatic analysis with the matrix material
modeled as rigid perfectly plastic and obeying von Mises yield criterion. Constants
b1 and b2, introduced by Tvergaard [23], provide a better fit of results computed
from a FE analysis of the formation of ASBs in a plate having an array of large
cylindrical voids with test observations, and _kk is the factor of proportionality defined
by Eq. (11); _kk > 0 only when the material point is deforming plastically. ry is the cur-
rent yield stress of the material whose dependence upon the effective plastic strain epe ,
the effective plastic strain rate _eepe and the temperature h is described by the Johnson–
Cook [24] relation (14) in which A; B; ~CC; _eep0, and m are material parameters, hr the
room temperature, and hm the melting temperature of the material. Parameters B
and n characaterize the strain hardening of the material, ~CC and _eep0 the strain-rate
hardening and the last factor on the right-hand side of Eq. (14) its thermal softening.

Eq. (12) gives the evolution of porosity; the first term on its right-hand side is
derived by assuming that the matrix is incompressible and the elastic dilatation is
negligible as compared to the plastic dilatation, and the second term is the strain
based nucleation of voids introduced by Chu and Needleman [25]. f2; s2, and en
are material parameters; the rate of nucleation of voids is highest when epe equals en
and decays exponentially with the difference between epe and en. H is the Heaviside step
function.We have thus assumed that new voids nucleate only when the hydrostatic stress
is tensile. Toaccount for the coalescenceof neighboring voids,TvergaardandNeedleman
[26] enhanced the porosity, as given by Eq. (13), after it reaches its critical value fc. In Eq.
(13), ff is the porosity at ductile fracture, and fu ¼ 1=b1 is the porosity when the yield sur-
face has shrunk to a point. Eqs. (8) and (14) imply that the radius of the vonMises yield
surface increasesdue to strain- and strain-rate hardeningof thematerial but decreasesdue
to the softening induced by the temperature rise and the increase in porosity. The degra-
dation of material properties due to the damage, taken here synonymous with the po-
rosity, is indicated by Eqs. (5) through (8). The expression for the thermal conductivity
in Eq. (7)1 is due to Budiansky [27].

Substitution from Eqs. (6)1 and (7) into (4) gives the following hyperbolic heat
equation:

q0ð1� f0Þcðs€hhþ _hhÞ ¼ j 1� 3

2
f

� �
h;a

� �
;a þ JrijD

p
ij ð15Þ

The term JrijD
p
ij equals the heating due to plastic working per unit volume in the

reference configuration; thus the Taylor-Quinney parameter has been taken as 1.
Except for a delay in the time of initiation of an ASB other results remain
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unaffected by a lower value of the Taylor-Quinney factor. The form (15) of the hy-
perbolic heat equation is due to Cattaneo [28] and Vernotte [29]. The thermal relax-
ation time s in it represents the time required to establish a steady state of heat
conduction in an element suddenly exposed to heat flux. For a typical steel,
s ¼ 1� 10�12 s, and s ’ 25� 10�12 s for copper. Batra and Lear [30] and Batra
and Chen [31] found that the finiteness of the thermal wave speed affects the ASB
initiation time in a typical steel and the spacing between adjacent shear bands only
when s � 10�6 s. Batra [32] considered higher-order spatial and temporal gradients
of temperature and derived a heat equation that admits finite speeds of thermal
waves. However, in such a material either a thermal wave propagates with a finite
speed or the linearized problem has a unique solution. Ideally, one will like to have
both.

We note that Batra and Kim [33], Batra and Jaber [21], and Batra and Chen
[31,34] have analyzed different aspects of shear banding with four different thermo-
viscoplastic relations, namely, the Johnson–Cook [24], the Litonski–Batra (e.g.,
Batra [35]), the Bodner–Partom [36], and a power law. These relations were cali-
brated to give nearly the same effective stress vs. the effective strain curve during
homogeneous deformations of the body. However, during inhomogeneous defor-
mations, each one of the relations gave qualitatively similar but quantitatively dif-
ferent results. The decision to use the Johnson–Cook relation here is based on the
availability of values of thermomechanical parameters for tungsten and nickel-
iron.

Initial and Boundary Conditions

Each constituent is initially at rest, stress free, at a uniform temperature, has
zero rate of change of temperature, and a prescribed initial porosity. Thus

xðX; 0Þ ¼ X; vðX; 0Þ ¼ 0; hðX; 0Þ ¼ h0; _hhðX; 0Þ ¼ 0; qðX; 0Þ ¼ q0ðXÞ; rðX; 0Þ ¼ 0

epeðX; 0Þ ¼ 0; f ðX; 0Þ ¼ f0ðXÞ; X 2 X ð16Þ

Here X is the region occupied by the body in the reference configuration.
When analyzing plane strain tensile deformations, the body is assumed to be

prismatic having a uniform cross-section in the X1X2-plane, and the volume fractions
of constituents, initial conditions, and boundary conditions are taken to be inde-
pendent of the X3-coordinate; e.g., see Figure 1a. Furthermore, the cross-section is
a square of side 2H, and thermomechanical deformations are assumed to be sym-
metric about the two centroidal axes. Thus the compositional profile has been tacitly
assumed to be symmetric about the two centroidal axes. Boundary conditions (17)4–6
and (17)7–9, listed below, arising from the symmetry of deformations are imposed at
points on the centroidal axes X1 ¼ 0 and X2 ¼ 0. The vertical surface X1 ¼ H is
taken to be traction free and thermally insulated; see Eq. (17)1–3. Normal velocity,
null tangential tractions, and zero heat flux are prescribed on the top horizontal sur-
face X2 ¼ H; these are given by Eq. (17)10–12. The prescribed normal velocity, given
by Eq. (17)12, increases linearly with time to its steady-state value v0 in 1 ms.
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T21 ¼ T11 ¼ 0; Q1 ¼ 0 on X1 ¼ H

T21 ¼ 0; v1 ¼ 0; Q1 ¼ 0 on X1 ¼ 0

T12 ¼ 0; v2 ¼ 0; Q2 ¼ 0 on X2 ¼ 0

T12 ¼ 0; Q2 ¼ 0; v2 ¼
v0t; 0 � t � 1 ms;

v0; t � 1 ms;

�
on X2 ¼ H

ð17Þ

Plane strain simple shearing deformations of a body of length 2L and height
2H, as shown in Figure 1b, are also analyzed. Periodic boundary conditions are

Figure 1 a) Schematic sketch of the plane strain tension problem, b) Schematic sketch for the plane strain

simple shear problem, c) Effective stress vs. effective plastic strain curve for plane strain extensional defor-

mations of tungsten and nickel-iron.
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applied on the surfaces X1 ¼ �L, which specify that the displacements and tem-
peratures are equal at corresponding points and simulate an infinitely long speci-
men of height 2H. The top and the bottom surfaces are taken to be smooth,
thermally insulated and restrained from motion in the X2-direction. Equal and op-
posite tangential velocity v1 that increases linearly with time from zero to its final
value v0 in 1 ms is applied to the top and the bottom surfaces. Thus on x2 ¼ �H,
we have

Q2 ¼ 0; v2 ¼ 0; v1 ¼
�v0t; 0 � t � 1 ms
v0; t > 1 ms

�
ð18Þ

For t > 1 ms, the average strain-rate is v0=H.
With the X2-axis coincident with the centroidal axis of the cylinder and the X1-

axis in the radial direction, boundary conditions for the axisymmetric problem are
the same as those for the plane strain problem listed above in Eq. (17).

Boundary conditions (17)1–4, (17)6–7, and (17)9–11 are called natural and (17)5,
(17)8, and (17)12 essential.

The tungsten particulates are infinitely long circular cylinders for the plane
strain and the simple shear problems, and circular rings for the axisymmetric
problem.

Figure 1 Continued.
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Interface Conditions

It is assumed that, during the entire deformation process, the tungsten particu-
lates are both mechanically and thermally perfectly bonded to the NiFe matrix. Thus

½u� ¼ 0; ½h� ¼ 0; ½TiaNa� ¼ 0; ½QaNa� ¼ 0 on C ð19Þ

where N is an outward unit normal, in the reference configuration, to the interface C
between a particulate and the matrix, u is the displacement of a point, and the square
bracket indicates the jump of a quantity across the interface C between a particulate
and the matrix.

Nondimensionalization of Variables

Let qR ¼ q0, _eeR; H; r0, and hR be the reference mass density, the reference
strain rate, the reference length, the reference stress, and the reference temperature
used to nondimensionalize quantities. Then in terms of nondimensional variables
indicated by the same symbols as before, Eqs. (2) and (15) become

aIð1� f0Þ _vvi ¼ Tia;a; i ¼ 1; 2; 3 a ¼ 1; 2; 3 ð20Þ

ð1� f0Þðs€hhþ _hhÞ ¼ �at 1� 3

2
f

� �
h;a

� �
;a þ JrijD

p
ij ; i; j ¼ 1; 2; 3 ð21Þ

Here

aI ¼
qR _ee

2
RH

2

r0
; at ¼

j
qRcH2 _eeR

; hR ¼ r0
qRc

ð22Þ

aI and at are nondimensional measures of inertia and heat conduction effects, re-
spectively. For a given material, inertia effects are directly proportional to the square
of the reference strain rate and the square of the reference length. Heat conduction
effects are inversely proportional to the reference strain rate and the square of the
reference length. A possible choice for 2H is the length of a side of the square
cross-section for the plane strain problem, the thickness of the block for the simple
shearing problem, height of the cylinder for the axisymmetric problem, the particu-
late diameter, the smallest distance between any two particulates, the finite element
size and that for _eeR is v0=H. Indices i and j in Eq. (21) range over 1, 2, and 3 because
r33 and Dp

33 need not vanish. In a plane strain problem, of course, D33 ¼ 0. In a
homogeneous material aI influences the ASB initiation time and at the ASB width.

Semi-Discrete Formulation of the Problem

Eqs. (5), (6)2, and (3) imply that the balance of moment of momentum (3) is
identically satisfied. The present mass density can be computed from Eq. (1) if the
deformation gradient and the current value of the porosity are known. Thus, the de-
pendent variables to be solved for are x; f , and h and the independent variables are
X and t. Eqs. (20) and (21) are second-order coupled nonlinear hyperbolic partial dif-
ferential equations for x and h. These cannot be written explicitly in terms of x and h
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since T is given by (6)2 and _rr by (5), which involves Dp and h. We solve the problem
numerically by the finite element method (FEM).

We first introduce an auxiliary variable n ¼ _hh. Let w1;w2; . . . ;wn be the FE
basis functions defined on X. We write

vi ¼
Xnodes
A¼1

wAðXÞ~vvAiðtÞ; wi ¼
Xnodes
A¼1

wAðXÞcAi; i ¼ 1; 2

h ¼
Xnodes
A¼1

wAðXÞ~hhAðtÞ; n ¼
Xnodes
A¼1

wAðXÞ~nnA

ð23Þ

Here ~vv is the vector of velocities of nodes, ~hh the vector of nodal temperatures, ~nn the
vector of rate of change of temperature at the nodes, and c’s are constants. Follow-
ing the usual procedure, e.g., see [37], we get

M _~vv~vv ¼ �Fint; _hh ¼ ~nn; sH _~nn~nnþH~nn ¼ Fh þ ~QQ ð24Þ

where

MAB ¼
Z
X
aI ð1� f0ÞwAwBdX; F int

Ai ¼
Z
X
wA;aTiadX

HAB ¼
Z
X
ð1� f0ÞwAwBdX; F h

A ¼
Z
X
at 1� 3

2
f

� �
h;awA;adX

QA ¼
Z
X
wAJ trðrDpÞdX

ð25Þ

Note that the natural boundary conditions have been embedded in Eq. (24).
We solve Eq. (14) for _eepe in terms of ry; epe , and h and derive its weak form in

the same way as we derived Eq. (24) except that the divergence theorem is not used.
Recall that _eepe > 0 only when a material point is deforming plastically as signified by
the satisfaction of Eq. (8)1; otherwise _eepe ¼ 0. Weak forms of Eqs. (5), (14), and
_xx ¼ vðX; tÞ are also derived. We thus get coupled nonlinear ordinary differential
equations

_dd ¼ F ð26Þ

where d is the vector of unknowns and F is the force vector that depends upon time t
and dðtÞ. The 12 unknowns at a node are fx1; x2; v1; v2; r11;r22; r12; r33; f ; h; n; epeg,
and the dimension of vector d equals 12 times the number of nodes.

Values of Material Parameters

Values of thermophysical parameters for the W and the NiFe are listed in
Table 1. Values assigned to other parameters given below in (27) are the same for
the two constituents.

b1 ¼ 1:5; b2 ¼ 1:0; f2 ¼ 0:04; s2 ¼ 0:1; en ¼ 0:5; s ¼ 10�8s; hr ¼ 273K

fc ¼ 0:15; fu ¼ 2=3; ff ¼ 0:25 ð27Þ
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Thus the acoustic impedances,
ffiffiffiffiffiffiffi
Eq

p
, of W and NiFe equal 87:86� 106 and

48:44� 106 kg=ðm2sÞ respectively and differ by a factor of 1.8. The bar wave speeds,ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE=qÞ

p
, in W and NiFe are 4,552 and 5,265m=s and differ by a factor of 0.86.

Figure 1c shows the effective stress versus the effective plastic strain curve for
homogeneous W and NiFe bodies deformed in plane strain tension. It is clear that
the yield stress for W is considerably higher than that for NiFe, the peak value of
the effective stress in W is reached at a considerably lower value of the effective plas-
tic strain than that in NiFe, and the thermal softening in W is significantly higher
than that in NiFe.

Because of the random distribution of W particulates and the variation of the
axial load with time t, the fraction of the axial load supported by W and NiFe at a
horizontal surface x2 ¼ constant varies with t. Once either one or both of these con-
stituents begin to deform plastically, the speeds of incremental elastic waves in them
will depend upon values of the tangent moduli. There are four nonzero components
of the Cauchy stress tensor and the elastic strain tensor giving 16 elastic moduli for
each material; these need not vanish simultaneously.

ASB Initiation Criterion in a Homogeneous Body

Batra and Rattazzi [38] studied the initiation and propagation of an ASB in a
prenotched thick-walled steel tube and found that the choice of the ASB initiation
criterion affected the predicted initiation time. They used four different criteria: (i)
the effective plastic strain at a point equals 0.5, (ii) the effective plastic strain at a
point equals 1.0, (iii) the effective stress at a point has dropped to 90% of its peak
value at that point, and (iv) the effective stress at a point has dropped to 80% of
its maximum value at that point; in each case the material point must be deforming
plastically. Criteria (iii) and (iv) reflect Marchand and Duffy’s [39] observation that
the torque required to twist thin-walled tubes drops precipitously upon the initiation
of an ASB. Batra and Kim [40] scrutinized ASBs in 12 materials deformed in simple
shear and proposed criterion (iv), which we use in the present work to delineate if an
ASB has initiated in a constituent. We note that the criterion (iv) was successfully
used in [9] to ascertain the ASB initiation time in a functionally graded elastothermo-
viscoplastic body.

Table 1 Values of material parameters

Material q ðkg=m3Þ E (GPa) n j (W/mK) c (J/(kg K)) a ð10�6=KÞ

Tungsten 19,300 400 0.29 160 138 5.3

NiFe 9,200 255 0.29 100 382 15

A (MPa) B (MPa) n ~CC _eep0 ð1=sÞ hm ðKÞ m

730 562 0.075 0.290 10�6 1723 1.0

150 546 0.208 0.0838 10�6 1225 1.0
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Length Scales

Besides the specimen size there are at least the following six length scales in the
problem: (i) the viscous length ð

ffiffiffiffiffiffiffiffiffi
E=q

p
Þ=_eep0, (ii) the thermal length atH, (iii) the par-

ticulate diameter, (iv) the smallest distance between any two particulates, (v) the
finite element size and (vi) the inertial length atH. The viscous length could also
be defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE=qÞ

p
H=v0. For the particulate composite each constituent has its

own viscous, inertial and thermal lengths; these and other length scales for dipolar
materials are given in Ref. [48].

For simple shearing deformations of a homogeneous and isotropic elastother-
moviscoplastic material Batra [54] has scrutinized the effect of different material
parameters and hence of length scales, and Batra and Kim [40] have obtained mesh
independent results. Batra and Chen [34] have shown that the computed band width
depends upon the specimen size. For dipolar materials Batra and Kim [49] found
that the computed width of an ASB depends upon the material characteristic length
introduced by the strain rate gradients and mesh-independent results can be easily
computed; Batra and Liang [55] extended it to plane strain problems.

Time Scales

Time scales in the problem include 1=_eep0,H=v0,H
ffiffiffiffiffiffiffiffiffi
q=E

p
and 1=s. For a particu-

late composite each constituent has its own time scales. Furthermore, H can be
replaced by either the particulate diameter or the smallest distance between any
two particulates or the finite element size. Besides influencing the time step size in
the numerical integration of Eqs. (24)1 and (24)2, it is not clear how they influence
the ASB initiation time.

COMPUTATIONAL CONSIDERATIONS

Brief Description of the Computer Code

A computer code employing 4-node isoparametric quadrilateral elements has
been developed. Integrals in Eq. (25) over each element are evaluated by using the
2� 2 Gauss quadrature rule. Should a FE span two materials, values of the material
parameters at the Gauss quadrature point are used. Batra [41] employed this
procedure for analyzing finite static deformations of an inhomogeneous cylinder
made of a Mooney–Rivlin material and showed that computed results matched well
with the analytical solution. The coupled nonlinear ordinary differential Eq. (24) is
modified to incorporate the essential boundary conditions in Eq. (17) and is then
integrated with respect to time t by using the subroutine LSODE (Livermore Solver
for Ordinary Differential Equations) that can be downloaded free from the internet.
It adjusts adaptively the time step and the order of the integration scheme so as to
compute a stable solution within the prescribed absolute and relative tolerances. Be-
cause of the large number of nodes in the FE mesh, the Adams-Moulton integration
method obtained by setting MF ¼ 10 in LSODE is employed.

Both the mechanical and the thermal problems are hyperbolic. Since the speed
of the thermal wave is considerably smaller than that of the mechanical waves, the
latter controls the size of the time step. Once deformations begin to localize even
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at one point in the body, the time step drops significantly. This drop in the time step
occurs at a lower value of the nominal strain for a particulate composite than that
for a homogeneous body. It is because inhomogeneities in deformations introduced
by numerous particulate=matrix interfaces induce localization, not necessarily simul-
taneously, of deformation at several discrete points in the body. Eventually the de-
formation localizes into a connected region that does not pass through all of the
discrete points where the deformation had localized. For a 100� 100 uniform FE
mesh the CPU time is	100 hours on a SGI single processor of an SGI Altix machine.

Verification of Code

The method of fictitious body forces (also called the method of manufactured
solutions) is used to verify that the code correctly solves Eqs. (20) and (21). In this
method, analytical expressions for the displacement and the temperature fields are
presumed, and body forces and sources of internal energy (note that these had been
set equal to zero in Eqs. (20) and (21)) are computed so as to satisfy the balance of
linear momentum and the balance of internal energy. Also, initial and boundary con-
ditions are derived from the assumed displacement and temperature fields. These are
input into the code and the numerical solution is found. A good agreement between
the computed and the analytical solutions verifies the code. This method was also
used by Batra and Liang [42], e.g., see remarks following Eq. (30) of their paper.

For a shear band problem, computed results were also found to agree very well
with those obtained by Batra and Lear [30] who employed a similar problem formu-
lation but 3-node triangular elements. The code was used to study wave propagation
in an inhomogeneous elastic bar [43]. The time histories of the computed wave speed
and the axial stress at a point were found to agree well with the analytical solution of
Chiu and Erdogan [44].

Effect of the FE Mesh

The finite element mesh used to analyze the problem is based on the numerical
experiments described in Ref. [9] and the available computational resources. In [9] we
used 40� 40, 80� 80, and 120� 120 uniform FE meshes to delineate the initiation
of an ASB in an inhomogeneous 5mm� 5mm body. The material properties varied
continuously in the radial direction. The ASB initiation times with the three meshes
were found to be 65.9, 64.8, and 64.5 ms respectively, and the corresponding CPU
times were 1133, 6908, and 29242 s. Thus a 40� 40 uniform FE mesh can predict
well the ASB initiation time. Similar results were found in [30] for a homogeneous
body.

RESULTS

Plane Strain Tensile Deformations

Effect of particulate size The 0:5mm� 0:5mm region is divided into
100� 100 uniform 4-node quadrilateral elements. Keeping the volume fraction of
W particulates fixed at 50%, random distributions of 40, 50, 60, and 75 mm diameter
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particulates, as shown in Figures 2a–d, are considered. These particulate diameters
are typical of those employed by Dick et al. [15] in their experiments on WHAs.
The prescribed velocity on the top surface increases linearly from 0 to 0.25m=s in
1 ms and then stays steady. Thus for t > 1 ms the nominal axial strain rate induced
in the body is 5000=s. Time histories of the axial load computed from the axial stress

Figure 2 W (particulate)=NiFe (matrix) with particulate diameter (a) 40mm; (b) 50 mm; (c) 60 mm; (d)

75 mm; (e) axial load versus time for (a)–(d); and (f) axial load vs. time for homogeneous bodies comprised

of W and NiFe.
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at nodes on the top surface are plotted in Figure 2e. As for a homogeneous body,
with the continuous application of the axial velocity, the axial load first increases,
reaches a plateau and then drops rapidly; the results for a pure W and a NiFe block
are given in Figure 2f. Whereas for 0 < t � 50 ms the time-history of the axial load
exhibits oscillations for a homogeneous body, it varies rather smoothly for the par-
ticulate composite. Even though the peak load for a particulate composite varies
slightly with the particulate size, it occurs at an axial strain of 	 0:08 for the four
particulate sizes considered. For a homogeneous body having zero initial porosity,
the load drops rapidly at axial strains of 	 0:386 and 	 0:944 for W and NiFe
respectively. With an initial nonuniform porosity distribution having a maximum
value of 2.5% at the specimen centroid the rapid load drop initiated at an axial strain
of 	 0:137 in the otherwise homogeneous body made of W; see [9]. Thus the presence
of initial defects strongly influences the time when the load begins to drop and an
ASB initiates and eventually develops. The mismatch between the properties of
the particulates and the matrix introduces a much stronger defect than that intro-
duced by the initial nonuniform distribution of porosity. The results plotted in Fig-
ure 2e suggest that the particulate size affects neither the axial strain when the peak
in the axial load occurs nor the rate of drop of the axial load. Also the load drops
rather gradually in a particulate composite than in the homogeneous body. Neither
in the particulate composites nor in the two homogeneous materials does an ASB
initiate when the axial load attains its peak value. The computed axial load incorpo-
rates the softening induced due to the heating of the specimen, porosity evolution
and the decrease in the area of cross-section, i.e., due to damage, geometric and
thermal effects.

For the simple shearing deformations of a homogeneous body Molinari and
Clifton [45] have given a relation between the defect size and the time when the de-
formation localizes. Batra and Kim [40] have studied numerically the influence of
the defect size on the time of initiation of an ASB and also on the eventual band-
width. These investigations reveal that the time of initiation of the localization of
deformation decreases exponentially with an increase in the defect size. However,
the equivalence relation among different defect types—porosity, rigid inclusion, vari-
ation in dimensions of the specimen (or a geometric defect), boundary conditions
such as frictional forces, and=or thermal energy input through the boundaries,
and interfaces between distinct materials—has not been scrutinized.

In order to delineate the initiation and development of an ASB in a particulate
composite, we have exhibited in Figure 3 fringe plots of the effective plastic strain at
five different times for the case of 40 mm diameter particulates. With an increase in the
average axial strain the softer NiFe matrix undergoes more intense plastic deforma-
tions as compared to those of W particulates. Figure 3a exhibits several narrow
regions of large plastic deformation at t ¼ 30 ms. During the subsequent 10 ms, the ef-
fective plastic strain has grown in many of these regions. However, it is hard to delin-
eate where an ASB will eventually develop. There seem to be at least two regions of
large plastic deformation in Figures 3c and 3d. Even at an average axial strain of 0.35
there are many regions where the effective plastic strain is nearly 100%. We now
attempt to delineate which ones, if any, of these regions correspond to ASBs.

Figure 4 shows the axial stress ryy and the effective plastic strain as a function
of time in the 40 mm particulate diameter composite at two arbitrarily chosen points:
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Figure 3 Contours of effective plastic strain with W particulates of diameter 40mm at (a) 30 ms, (b) 40ms,
(c) 50 ms, (d) 60ms, and (e) 70ms.
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a point inside W initially located at ðX1;X2Þ ¼ ð0:06; 0:4Þ and a nearby point located
inside the NiFe matrix initially at ð0:085; 0:4Þ. At any time the effective plastic strain
is much higher in the NiFe matrix than that in the W particulate and the axial stress
is higher in the W than that in the NiFe. Because of the assumption of perfect bond-
ing between the two materials, displacements, surface tractions, temperature, and the
normal component of the heat flux at common interfaces between them are continu-
ous. Even though the quasistatic yield stress of W is nearly three times that of NiFe,
for t > 10 ms the effective stress in W is only a little higher than that in NiFe because
of the large differences in their strain- and strain-rate hardening characteristics.
However, results plotted in Figure 4b reveal that, at any time t, the effective plastic
strain in W is less than one-third that in NiFe. Since the heat capacity qc of W is
approximately 30% higher than that of NiFe, the temperature rise in W is slightly

Figure 4 Time histories of (a) axial stress, (b) effective plastic strain, and (c) temperature rise at two nearby

points, one inside a particulate and the other in the matrix for the 40mm particulate diameter composite.
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less than that in NiFe; this is depicted in Figure 4c. The two materials are softened
thermally at different rates due to differences in their temperatures and thermal
softening parameters. Thus effective plastic strain rates are different in the two mate-
rials. Results plotted in Figure 4b suggest that for t � 70 ms the effective plastic strain
rate at the point in the NiFe matrix is considerably more than that in the W particu-
late. At t 
 70 ms or the average axial strain of about 0.35, the effective plastic strain
rates at both points decrease noticeably; the change being more noticeable for the
point in the NiFe matrix than that for the point in the W particulate.

For t ¼ 80:1 ms and t ¼ 90:1 ms, Figure 5 depicts points where the ASB in-
itiation criterion for a homogeneous material described previously has been satisfied
and also contours of the effective plastic strain. Attempts to find the time sequence in
which ASBs initiated at these points failed since the state of deformation at a ma-
terial point satisfied the ASB initiation criterion at t ¼ t1 but did not do so at
t ¼ t2 > t1. Points where the ASB criterion has been satisfied at either one of these
two times do not lie on a continuous curve and hence do not form a discernible
ASB, despite the high levels of deformation exhibited in the corresponding contours
of the effective plastic strain. It is thus clear that the ASB initiation criterion in a par-
ticulate composite is different from that in a body with either uniform or continuous
variation of material properties.

After a close scrutiny of the spatial and the temporal variations of different
measures of deformation, it was found that at late stages of deformation, the spatial
variations of the axial velocity and the rate of change of temperature are similar. At
points where the axial velocity varies sharply, the rate of increase of temperature is
also very high. In locally adiabatic deformations, the rate of increase of temperature
equals the energy dissipation rate=mass divided by the specific heat. In general, the
heat conduction, the energy dissipation rate and the heat capacity influence the rate
of temperature rise at a point.

For a particulate composite with 50% volume fraction of 40 mm diameter W
particulates in NiFe matrix, Figure 6 evinces contour plots of the axial velocity
and the rate of increase of temperature at an axial strain of 35%, or equivalently
t ¼ 70 ms. It is clear that the axial velocity varies sharply across regions where the
rate of increase of temperature is also extremely large. These results suggest that
at an average axial strain of 	0.35 or at 	70 ms the deformation has localized into
two regions across which the axial velocity and the rate of change of temperature
vary sharply. We note that during the simple shearing and the plane strain deforma-
tions of a homogeneous material the tangential velocity has a steep gradient across
an ASB. Thus the development of a narrow region across which the tangential velo-
city varies sharply is synonymous with the formation of an ASB in monolithic mate-
rials, materials with continuously varying thermo-mechanical parameters and
particulate composites. However, this can only be discerned by post-processing
results of the numerical solution.

Equivalent homogenized body One would like to replace the particulate
composite with a homogeneous material whose effective properties are obtained
by either analyzing deformations of a representative volume element (RVE) or by
the rule of mixtures. Love and Batra [46] found that, except for the strain-rate hard-
ening coefficient ~CC, the two methods give esstentially the same values of various
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Figure 5 Points satisfying the ASB initiation criterion and contours of effective plastic strain in a W=NiFe

particulate composite with 50mm diameter tungsten particulates at (a) 80:1ms and (b) 90:1 ms.

Figure 6 Contours of (a) axial velocity and (b) rate of increase of temperature, b, in a particulate com-

posite with 40mm diameter particulates at an axial strain of 35%.
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material parameters that are independent of the particulate size. Here we have
employed values of the thermomechanical parameters found by analyzing deforma-
tions of a RVE [46].

The particulate composite possesses many particulate=matrix interfaces that
act as local defects. We propose to simulate the cumulative effect of these defects
in the homogeneous body with an initial porosity distribution f0ðXÞ given by

f0ðX Þ ¼ fceð1� r
HÞ; 0 � r � H

0; r � H

�
ð28Þ

Here r ¼
ffiffiffiffiffiffiffiffiffiffiffi
XaXa

p
is the distance from the centroid in the reference configuration and

H ¼ 0:5mm is the height of the specimen. The porosity fce at the centroid is varied
such that the rates of increase of temperature at points where an ASB develops in the
particulate composite and in the homogeneous material are similar. Figure 7 shows

Figure 7 Rate of increase in temperature at a point inside the ASB in 50=50W=NiFe particulate composites

with particulate diameters of (a) 40 mm, (b) 50 mm, (c) 60 mm, and (d) 75mm, as well as the rate of increase of

temperature at the centroid of equivalent homogeneous bodies with nonuniform initial porosity; coordi-

nates denote the position of the point in the particulate composite in the reference configuration.
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the time histories of the rate of increase of temperature for three nodes inside the
ASB in each of the four particulate composites and the rate of increase of tempera-
ture at the centroid of an equivalent homogeneous body for different values of fce.
The nodes in the particulate composites were selected in local regions of intense plas-
tic deformation that also saw a large rate of change of temperature; their coordinates
in the reference configuration are listed in the figure.

Note that the rate of increase of temperature for the homogeneous body
increases monotonically with time; that for the particulate composites shows some
fluctuations at different nodes that have been smoothened out in the plots. Further-
more, at any time t several nodes in a particulate composite exhibit heating at similar
rates. This behavior is not seen in the homogeneous body, where the centroid is
heated more rapidly than other points in the body. These severely heated points in
a particulate composite may be disconnected. In a homogeneous body, the ASB
originates at the centroid and propagates at 45� in the present configuration. In a
particulate composite the point of initiation of an ASB can be discerned by post-
processing the numerical solution. ASB formation and propagation in the particu-
late composite is more complex. The ASB initiation criterion for a homogeneous
body may have been satisfied either simultaneously or sequentially at several points.
However, the eventual ASB may not pass through all of these points.

We postulate that an ASB initiates at a point when the slope of the _hh vs. t curve
for the point suddenly increases by an order of magnitude. Note that the slope of _hh
vs. t curve equals the curvature of h vs. t curve. The ASB initiation times for the four
particulate diameters computed according to this criterion are listed in Table 2.
Whereas for the 40 and the 60 mm diameter particulates the ASB initiation times
at the three points vary noticeably those for the 50 and the 75 mm diameter particu-
lates are relatively close to each other. These variations in the ASB initiation times
can not be attributed to the constituent of the three points. For each particulate
diameter considered, an ASB passes through NiFe and W.

For the equivalent homogenized body the ASB initiation times for the three
values of the initial porosity at the specimen centroid are compared with that for
the particulate composite in Table 3. Whereas we can find fce so that an ASB initiates
in a particulate composite and in the equivalent homogenized body at about the
same time, the orientations and the centers of the ASB in the two bodies will gener-
ally be quite different.

Dai et al. [47] studied ASB initiation in a composite body comprised of SiC
particles immersed in aluminum. The specimens were twisted in a split Hopkinson
bar with presumably the same torsional impulse. They found that ASBs formed

Table 2 Effect of particulate diameter on the ASB initiation times

Particulate diameter (mm)

Material, and ASB initiation time (ms)

Point 1 Point 2 Point 3 Average

40 NiFe, 66 W, 50 W, 44 53

50 W, 58 W, 56 NiFe, 60 58

60 W, 52 W, 54 W, 64 56.7

75 W, 74 NiFe, 76 W, 76 75.3
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more readily as the particulate size was reduced, and the maximum shear strain
induced in particulate composites increased as the particulate diameter was reduced.
They explained this by conjecturing that strain gradients increase with a decrease in
the particulate diameter and they provide a driving force for the formation of ASBs.
Batra [48] and Batra and Kim [49] showed that the consideration of strain-rate gra-
dients and the corresponding higher-order stresses delays the initiation of an ASB. In
order to see how strain gradients depend upon the particulate size, we have plotted in
Figure 8 the spatial variation on the line x2 ¼ 0:4mm of the mass density and the
effective plastic strain for the four particulate sizes considered when the average axial
strain in each composite equals 0.25. The line x2 ¼ 0:4mm and the time t ¼ 50 ms are
arbitrarily chosen. As expected sharp gradients in the effective plastic strain occur at
points adjacent to the particulate=matrix interface. For each particulate composite
there are sharp spatial gradients in the effective plastic strain.

The effective plastic strain in W is considerably less than that in NiFe; the lo-
cation of a W particulate is identified from the plot of the mass density. The peak
magnitude of the effective plastic strain gradient and where it occurs are different
for the four particulate composites. It is reasonable to expect that the maximum
magnitude of the strain gradient and its location vary with time. At t ¼ 50 ms the
maximum strain gradient on the line x2 ¼ 0:4mm equals 	1700/m. One difference
between Dai et al.’s and the present work is that SiC particulates in the aluminum
matrix undergo very little deformation. However, W particulates within an ASB
are severely deformed. Another difference is that in Dai et al.’s work [47] the volume
fraction of 3.5, 10, and 20 mm SiC particles equalled 15%, and in the present work
the volume fraction of 40, 50, 60, and 75 mm diameter W particulates is 50%. In spite
of these differences ASB initiation times listed in Table 2 agree qualitatively with Dai
et al.’s [47] experimental observations. We should add that Dai et al. identify an ASB
with a narrow region of intense plastic deformation. Furthermore, they assume that
an ASB initiates at a point when the shear stress there peaks. However, as shown
herein an ASB usually initiates much later; also see [30,40,34].

Batra and Kim [50] and Kwon and Batra [51] explored the initiation of ASBs in
simple and dipolar (strain-rate gradient dependent) materials deformed in simple
shear and introduced a sinusoidal defect with multiple peaks of the same amplitude.
These can be viewed as inhomogeneities introduced by particulate=matrix interfaces.
They found stark differences in the ASB development in simple and dipolar materials.
Batra and Kwon [52] studied the initiation and the development of an ASB during
simple shearing deformations of a bimetallic body with the upper half made of one

Table 3 Effect of initial porosity in the homogenized body on the ASB initiation times

Particulate composite

ðfce; tSBÞ in the equivalent homogenized body.

tSB is in ms.
Particulate

diameter mm
ASB initiation

time ðmsÞ

40 53 (0.01, 64) (0.015, 54) (0.02, 48)

50 58 (0.01, 64) (0.015, 54) —

60 56.7 (0.01, 64) (0.015, 54) (0.02, 48)

75 75.3 (0.005, 74) (0.0075, 68) (0.01, 64)
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material and the lower half comprised of a different material. They found that the
thermal softening characteristics of the two constituents significantly influenced the
location of the ASB and it formed completely in the constituent exhibiting higher
thermal softening. When one of the constituents has very low thermal conductivity
relative to the other one, plastic strain rates in it are higher at points equidistant from
the centerline of the specimen.

Effect of particulate arrangement In order to assess the effect of the par-
ticulate arrangement, we have plotted in Figure 9 fringes of the axial velocity and
the rate of temperature increase for three different random distributions of 50 mm di-
ameter particulates. It is clear that the particulate placements strongly influence
when and where an ASB initiates. For example in Figure 9a, an ASB seems to have
originated from a point on the vertical centoidal axis and propagated at �45�, but in

Figure 8 At an average axial strain of 0.25, variation of the mass density (dashed line) and the effective

plastic strain (thick line) along x2 ¼ 0:4mm for particulate composites with particulate diameters of (a)

40 mm, (b) 50 mm, (c) 60 mm, and (d) 75mm.
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Figure 9 Contours of the axial velocity and the rate of temperature increase b, for three different random
arrangements of 50mm diameter particulates: (a) arrangement 1 at 90ms, (b) arrangement 2 at 70ms, and
(c) arrangement 3 at 60 ms.
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Figure 9c, the origin of the ASB is at a point on the free surface and it propagated
only towards the centroid of the cross-section. Furthermore, the times of initiation
equal 	90 ms and 60 ms for particulate distributions of Figures 9a and 9c, respect-
ively. For the particulate distribution of Figure 9b, there is no narrow region across
which the axial velocity increases sharply. The plots of the rate of temperature
increase depicted in Figure 9 support the aforementioned remarks for the three par-
ticulate arrangements.

The variation of the mass density and the effective plastic strain on the line
x2 ¼ 0:4mm is exhibited in Figure 10. It is apparent that strain gradients are higher
for the particulate arrangement of Figure 10b than those for the other two arrangements
analyzed. The time histories of the rate of temperature rise, at three material points,
evinced in Figure 11 suggest that an ASB initiates at t 
 60 ms. The ASB initiation times
computed according to the criterion hypothesized above and the material of the point
are listed in Table 4. There is less variation in the ASB initiation time than in the contour
plots of the axial velocity and the rate of temperature increase. An initial affine porosity
variation with approximately 1.25% porosity at the specimen centroid in the equivalent
homogenized body will result in the ASB initiating at t 
 60 ms.

Figure 10 At an average axial strain of 0.25, variation of the mass density (dashed line) and the effective

plastic strain (solid line) along x2 ¼ 0:4mm for particulate composites with randomly distributed 50 mm
diameter particulates: (a) arrangement 1, (b) arrangement 2, and (c) arrangement 3.
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We note that the time histories of the axial load plotted in Figure 2e indicate
that the drop in the axial load to 80% of its peak value occurs at 64 ms � t
� 68 ms for the four particulate diameters. Whether or not it can be used as a
criterion for the ASB initiation remains to be investigated.

Figure 11 Rate of increase in temperature at a point inside the ASB in 50=50 W=NiFe particulate compo-

sites with particulate diameters of 50 mm for (a) arrangement 1, (b) arrangement 2, and (c) arrangement 3,

as well as the rate of increase of temperature at the centroid of equivalent homogeneous bodies with non-

uniform initial porosity; coordinates denote the position of the point in the particulate composite in the

reference configuration.

Table 4 Effect of particulate arrangement on ASB initiation time

Particulate arrangement

Material, and ASB initiation time ðmsÞ

Point 1 Point 2 Point 3 Average

1 W, 58 W, 56 NiFe, 60 58

2 NiFe, 58 NiFe, 60 NiFe, 56 58

3 W, 52 NiFe, 52 NiFe, 56 53.3
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Plane Strain Compressive Deformations

The three randomly assigned particulate arrangements of 50=50 W=NiFe com-
posite for studying plane strain compressive deformations are evinced in Figure 12.
Frictional forces between the loading device and the specimen are neglected. Because
of the increase in the width of the specimen while it is being compressed there is a
geometric hardening effect. Also the hydrostatic pressure is likely to be compressive,

Figure 12 For the plane strain compression of 50=50 W=NiFe particulate composites, (a)–(c) the three

random particulate arrangements, and (d)–(f) fringe plots of the rate of temperature rise, b at time

t ¼ 66:6 ms:
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implying that no new voids will nucleate. Thus unless thermal softening exceeds
hardening due to strain, strain-rate, and geometric effects the axial load required
to deform the specimen will increase monotonically. The time history of the axial
load depicted in Figure 13 reveals that hardening effects dominate. However, the de-
formation does localize as evidenced by the fringe plots of the rate of temperature
rise in Figure 12d–f. For each particulate arrangement the shape of the intensely
deforming region in the X1X2-plane is like V or K. As for the plane strain tensile
deformations one can find the shape, the time of initiation, and the center of the
ASB by post processing the computed solution.

For the particulate arrangement of Figure 12b we estimated the center line of
the ASB from the fringe plots of the rate of temperature rise and drew a line perpen-
dicular to it; this line across the ASB is depicted in Figure 14a. The computed axial
velocity, the rate of temperature rise, and the effective plastic strain at numerous
points on a line perpendicular to the centerline of the ASB are exhibited in Figure
14b-e. The abcissa equals the distance of a point from (0.7mm, 0). It is clear that
the variation of the effective plastic strain across an ASB is quite oscillatory and can-
not be used to determine the ASB width. However, the rate of temperature rise varies
smoothly across an ASB and can be used to ascertain its width. Both the temperature
rise and the axial velocity also vary smoothly across an ASB.

Figure 13 Time history of the axial load for plane strain compression of three particulate arrangements in

the 50=50 W=NiFe 40mm diameter particulate composite.
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Batra and Ko [53] scrutinized the effect of frictional force at the specimen/
loading device interface during axisymmetric compression of a homogeneous ther-
moviscoplastic body containing a defect at its centroid. They refined the mesh adap-
tively in order to delineate an ASB. It was found that for smooth contact surfaces the
specimen barreled inwards (i.e., the diameter of the deformed specimen at its center
was less than that at its end faces) but it barreled outwards for the case of infinite
friction. Also an ASB initiated much later in the axisymmetric problem than in
the plane strain problem, and the rate of the axial load drop subsequent to the
ASB initiation was considerably less for the axisymmetric deformations than that
for the plane strain deformation.

Figure 14 At time t ¼ 66:6 ms, (a) estimated centerline of ASB; (b)–(e) variation of the axial velocity, tem-

perature rise, rate of temperature rise, and the effective plastic strain on a line perpendicular to the ASB.

The distance is measured from the point ð0:7mm; 0Þ.
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Plane Strain Shear Deformations

We have analyzed plane strain simple shearing deformation of a 50=50
W=NiFe particulate composite deformed at a nominal strain rate of 5,000=s. Figure
15a,b exhibits the two particulate arrangements studied and the corresponding
fringes of the velocity in the direction of shearing and the rate of temperature in-
crease. Whereas for the particulate arrangement of Figure 15a the deformation loca-
lizes in the region abutting the bottom bounding surface, it does so near the top
bounding surface for the particulate arrangement of Figure 15b; the corresponding
times are 65 ms and 62 ms, respectively. Because of the periodic boundary conditions
prescribed on the two vertical edges, no waves are reflected from them. However
waves are reflected and refracted from the particulate/matrix interfaces and the
top and the bottom bounding surfaces. Consequently the state of deformation within
the body need not be that of simple shear. The speed of a shear (or a transverse)
wave in W is 0.86 times that in NiFe. The two random particulate arrangements
scrutinized are not symmetric about the midsurface of the specimen; accordingly,
deformations are asymmetric about the midsurface.

Axisymmetric Compression

For smooth contact between the loading device and the specimen, and three
random arrangements of particulates in a 50=50 W=NiFe composite, no ASB formed

Figure 15 For the plane strain simple shear deformations of 50=50 W=NiFe particulate composite, (a) and

(b) particulate arrangements; (c) and (d) fringe plots of the rate of temperature rise and (e) and (f) fringe

plots of the velocity in the shearing direction.
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till t ¼ 120:2 ms. The axial velocity varied smoothly throughout the specimen. Com-
putations ceased because of severe distortions of one of the elements in the FE mesh.

For axisymmetric tensile deformations, Figure 16a,b depicts contours of the
rate of increase of temperature and the time history of its evolution at three points
whose coordinates are given in the Figure. Material of the point initially at
(0:120; 0:030) is w and that of the other two points is NiFe. It is evident that the con-
nected region with the high rate of increase of temperature is not straight as it is for
the plane strain problem. Also, the constraint of axisymmetric deformations delays
the formation of an ASB; a similar phenomenon was observed in a homogeneous
body by Batra and Ko [53].

CONCLUSIONS

We have studied the development of an adiabatic shear band (ASB) in a particu-
late composite by analyzing deformations of the particulates and the matrix and also
of the equivalent homogenized body. Plane strain tensile, plane strain compressive,
plane strain simple shear and axisymmetric tensile/compressive deformations have
been scrutinized. It is postulated that an ASB initiates at a point when the slope of
the rate of temperature increase vs. time curve suddenly increases by an order of mag-
nitude. For the 50=50 W=NiFe particulate composite the ASB initiation times for the
three modes of deformation, obtained by averaging values listed in Table 4, are given
in Table 5.

For plane strain compressive deformations of a particulate composite an ASB
initiates even when the total axial load is monotonically increasing. Thus consideré
criterion [56] cannot be used to discern when the structure will become unstable. The
failure in plane strain compression is more sudden and hence more catastrophic than
in plane strain tension.

It is found that the initiation and propagation of ASBs in particulate compo-
sites is decidedly different from that in a homogeneous material; particulate=matrix
interfaces act as defects, introduce strong inhomogeneities into the deformations,
and promote the formation of ASBs. The point from where an ASB originates
and the shapes of regions where the deformations have localized strongly depend
upon the arrangement of particulates, and their diameters. A decrease in the particu-
late diameter enhances the initiation of an ASB. Contours of the rate of change of
temperature and of an appropriate component of velocity rather than contours of
the effective plastic strain facilitate the delineation of ASBs. The ASB initiation
criterion applicable to homogeneous and functionally graded materials fails for

Table 5 ASB initiation times for the different modes of deformation

Mode of deformation ASB initiation time ðmsÞ

Plane strain tension 56.4

Plane strain compression 66.6

Plane strain simple shear 63.5

Axisymmetric compression >120.2

Axisymmetric tension 97
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Figure 16 For axisymmetric tensile deformations, Figure 16a, b depicts contours of the rate of increase of

temperature and the time history of its evolution at three points whose coordinates are given in the Figure.

Material of the point initially at (/:12/;/:/3/;) is w and that of the other two points is Nife. It is evident

that the connected region with the high rate of increase of temperature is not straight as it is for the plane

strain problem, Also, the constraint of axisymmetric deformations delays the formation of an ASB; a simi-

lar phenomenon was observed in a homogeneous body by Batra and Ko [53].
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particulate composites. For plane strain tensile deformations, the time when the total
axial load has dropped to 80% of its peak value indicates when the ASB has
developed but provides no information about its point of initiation. For plane strain
compressive deformations of a particulate composite an ASB initiates even when the
total axial load is monotonically increasing. Thus Considerè criterion [56] can not be
used to discern when the structure will become unstable. The failure in plane strain
compression is more sudden and hence more catastrophic than that in plane strain
tension. These and other differences=similarities between ASB development in
homogeneous bodies and particulate composites are enumerated in Table 6.

In experiments one usually identifies a region of intense plastic deformation
with an ASB. As fringe plots of Figures 3 and 5 and the variation of the effective
plastic strain across an ASB in Figure 14 vividly illustrate there are numerous such
regions. However, the regions of steep gradients in the velocity and the rate of tem-
perature rise coincide with each other and do not necessarily encompass all regions
of large effective plastic strain. The effective plastic strain rate and the specific energy
dissipation rate in regions of high rate of increase of temperature are very large.
Depending upon the magnitude of the applied load and its duration the deformed
specimen may exhibit numerous regions of large plastic deformation without the for-
mation of a coherent shear band. There is the possibility of several microshear bands
forming within a macroshear band. An experimentalist has the daunting task of

Table 6 Comparison of ASB initiation and development in a homogeneous body and a particulate

composite

Homogeneous body Particulate composite

ASB originates from one point and

propagates in the direction of the

maximum shear stress.

ASB initiates at numerous points either

simultaneously or sequentially and

eventually may not pass through all of them.

Deformation becomes inhomogeneous

either due to the presence of an artificial

defect or due to the interaction among incident

waves and waves reflected from boundaries.

Particulate=matrix interfaces introduce

strong inhomogeneities in the deformation.

Contours of effective plastic strain

can be used to discern an ASB.

Contours of the rate of temperature rise

rather than of the effective plastic strain

can be used to delineate an ASB.

In simple loadings the direction of an ASB

can be predetermined.

The orientation of an ASB cannot be

estimated.

Tangential velocity varies sharply across an ASB. Tangential velocity varies sharply across

an ASB.

ASB tip can be ascertained

during the analysis.

ASB tip cannot be found during the analysis.

Effective plastic strain varies smoothly

across an ASB.

Effective plastic strain need not vary

smoothly across an ASB.

The load drops sharply when an ASB initiates

in plane strain tensile deformations.

The load drops gradually in plane strain

tensile deformations.

Once the ASB initiation criterion has been satisfied

at a point, it stays within the ASB subsequently.

Once the ASB initiation criterion for a constituent

has been satisfied at a point, it does not

necessarily stay within the ASB subsequently.

The effective plastic strain is maximum

at the ASB center.

The effective plastic strain is not necessarily

maximum at the center of an ASB.
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delineating all these. The 5 mm� 5 mm finite elements used in the analysis provide a
good qualitative description of the deformation. One needs a significantly finer mesh
to fully resolve all of the quantitative information, especially the band width. The
ASB initiation time decreases with a decrease in the particulate diameter. For the
three random particulate arrangements of 50% by volume of 50 mm diameter W
particulates in NiFe matrix, the ASB initiation times varied by less than 10%.

Finally we note that the bounding surface for all of the problems studied have
been taken to be thermally insulated. Batra and Wei [57] have scrutinized the
initiation and development of shear bands due to heat flux prescribed at the end
faces in an elasto thermoviscoplastic body undergoing simple shearing deformations.
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