
Journal of Thermal Stresses, 31: 1006–1021, 2008
Copyright © Taylor & Francis Group, LLC
ISSN: 0149-5739 print/1521-074X online
DOI: 10.1080/01495730802250714

PULL-IN INSTABILITIES IN FUNCTIONALLY GRADED
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We study pull-in instabilities in a functionally graded microelectromechanical system
(MEMS) due to the heat produced by the electric current. Material properties of
two-phase MEMS are assumed to vary continuously in the thickness direction. It is
shown that the pull-in voltage strongly depends upon the variation through the thickness
of the volume fractions of the two constituents. It is probably the first work to consider
Joule’s heating, dependence of the electric conductivity upon the temperature, and the
gradation of material properties in studying the pull-in instability in micro-thermo-
electro-mechanical plates.

Keywords: Coupled thermo-electric problems; Functionally graded materials; Microelectromechanical
system

INTRODUCTION

Electrostatically actuated microelectromechanical systems (MEMS) are used
as transistors, switches, micro-mirrors, pressure sensors, micro-pumps, and micro-
grippers, see e.g., [1–4]. MEMS are usually comprised of a conductive deformable
body suspended above a rigid grounded body [5]. An applied direct current
potential difference between the two bodies induces the Coulomb force that
deflects the deformable body, and consequently changes the system capacitance.
When an additional alternating current is applied to excite harmonic motions of
the deformable electrode, resonant devices are obtained. These devices are used in
signal filtering, and chemical and mass sensing, see e.g., [6–9]. The applied direct
current voltage has an upper limit beyond which the electrostatic force is not
balanced by the elastic restoring force in the deformable conductor, and the MEMS
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INSTABILITIES IN MICROTHERMOELECTROMECHANICAL SYSTEMS 1007

eventually collapses. This phenomenon, called pull-in instability, has been observed
experimentally [10, 11]. The critical voltage associated with this instability is called
the pull-in voltage. In micro-mirrors [2] and micro-resonators [12] the designer
avoids this instability to achieve stable motions, while in switching applications
[1] the designer exploits this effect to optimize device’s performance. Much of the
literature on MEMS is summarized in [13], and the pull-in instability in MEM
plates and membranes has been studied by several researchers; e.g., see [14–16] and
references cited therein.

The MEMS are typically laminated structures, and their desired performance
is achieved by varying the ply thickness, its material (silicon based materials),
and the stacking sequence [17–19]. Here we propose that they be comprised
of functionally graded materials (FGMs) in which material properties vary
continuously through the thickness. This is achieved by using two or more materials
and varying continuously their volume fractions. Such a design precludes the well-
known shortcomings (e.g., delamination and debonding) of laminated structures.
Moreover FGMs can be used in severe thermal environments.

Nearly all of the research work on MEMS has assumed that the two plates
are perfect conductors with no current flowing through the plates. Consequently,
the thermal management problem has not been addressed. We consider Joule’s
heating, and study the pull-in instability induced by temperature rise in FG MEMS
comprised of two parallel flat plates. In order to simplify the problem we regard
both plates to be rigid. Because of the dependence of the electric conductivity upon
the temperature, the non-linear equations governing the heat and the current flow
in a plate are two-way coupled. The pull-in voltage is defined as the minimum
voltage that results in an unbounded monotonic rise in the temperature of the plate.
A future study will combine the thermal, mechanical and electrical effects.

FORMULATION OF THE PROBLEM

We consider an isotropic micro-thermo-electro-mechanical plate (MTEMP) of
thickness 2h and length 2a with voltage difference V applied to the edges x1 = −a
and x1 = a as shown in Figure 1. Our primary interest is to analyze the effect
of Joule’s heating on the pull-in instability. Accordingly, we neglect mechanical
deformations of the plate, assume it to be isotropic, electrically and thermally

Figure 1 Functionally graded MTEMP.
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1008 D. J. HASANYAN ET AL.

conducting, and analyze coupled thermal and electrical fields. The simple geometry
and the assumption of the plate being rigid allow us to analyze and capture many
effects exhibited by a MTEMP. We assume that the plate dimension in the x2-
direction is much larger than 2a and 2h, the thermal and the electrical conductivities
of the material vary smoothly in the x3- and the x1-directions, and the electrical
conductivity of the material may depend upon the temperature.

The coupled thermo-electric fields in the plate are found by simultaneously
solving the Maxwell Eq. (1a) and the heat conduction Eq. (1b).

� · ����� = 0 (1a)

� · ���T�+ �����2 − ceṪ = 0 (1b)

The electrical field E is related to the electrostatic potential � by E = −��
where � = ��/�x1� �/�x3� is the in-plane gradient operator. Furthermore, � is the
electric conductivity, J = �E the electric current, T the temperature, � = ��x1� x3�
the thermal conductivity, ce = ce�x1� x3� the specific heat capacity of the material,
and a superimposed dot indicates differentiation with respect to time t. In Eq. (1a)
we have neglected inertia associated with the electrical field. This is justified since
the time scale for the electric problem is much smaller than that for the thermal
problem. The potential � and the temperature T are taken to satisfy the following
initial and boundary conditions:

��a� x3� t� = 0� ��−a� x3� t� = V�t�� ��x1�±h� t� = 0 (2a)

T�x1� x3� t��t=0 = 0

��x1�±h��T/�x3�x1=±h = ∓	�x1�±h��T − TA��x1=±h

��±a� x3��T/�x1�x1=±a = 0

(2b)

Here TA is the temperature of the surrounding environment, and 	�x1�±h� is
the heat transfer coefficient of the surfaces x3 = ±h. We note that the electrical and
the thermal boundary conditions at the corners are ambiguous, since these points
belong to two surfaces with different boundary conditions prescribed on them.
Boundary conditions (2a) and (2b) imply that the top and the bottom surfaces of
the plate are grounded and exchange heat with the surroundings through convective
type boundary conditions. The left and the right edges of the plate are thermally
insulated, the right edge is grounded, and the left edge surface is held at a time-
dependent voltage V�t�.

We assume that the electrical conductivity, the thermal conductivity, and the
specific heat can be expressed as

� = ��x1� x3� T� = �0�x3�f�x1� T��

��x1� x3� = ��x3��

ce�x1� x3� = ce�x3��

(3)

where �0�x3� is the electrical conductivity at the ambient temperature, and
f = f�T� = exp�T� is a continuous function of temperature and does not depend
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INSTABILITIES IN MICROTHERMOELECTROMECHANICAL SYSTEMS 1009

on the x1-coordinate. Exponential dependence of the thermal conductivity upon
the temperature is valid for materials used to fabricate Joule heaters, e.g., silicon
nitride (SiN) is one such material. We note that for undoped silicon, the electrical
conductivity decreases with a rise in temperature. When the electrical conductivity
varies with the temperature, Eqs. (1a) and (1b) are two-way coupled. However, when
the electrical conductivity is independent of temperature, then these two equations
are one-way coupled in the sense that the electric field can first be found by solving
Eq. (1a) under the prescribed boundary conditions, and then the temperature field
can be computed from Eq. (1b).

Reduced-Order Models of the Problem

Even with the afore-stated simplifying assumptions, we are unable to solve
the problem analytically. We employ an asymptotic expansion of the field variables
and investigate characteristics of the solution for a range of parameter values.
Said differently, we derive a variable-order plate theory for a plate made of a
nonlinear thermo-electric material.

Postulating that � and T are analytic functions of the thickness coordinate x3,
we expand them as

��x1� x3� t�/V0 =
N∑
i=0

�i�x1� t��x3�
i� T�x1� x3� t�/TA =

N∑
i=0

Ti�x1� t��x3�
i (4)

where V0 = V�0� equals the initial voltage applied to the left edge of the plate. Note
that no a priori assumption has been made about the solution of the problem being
symmetric with respect to x1 and x3. For a FG plate with volume fractions of
constituents and hence material properties varying through the plate thickness, the
solution, in general, will not be symmetric about the midsurface of the plate even if
boundary conditions on the top and the bottom surface are the same. Substitution
from Eq. (4) into Eqs. (1) through (3) and using the analogue of the principle of
virtual work (see [20–23]), we get a system of nonlinear coupled partial differential
equations for �i and Ti �i = 0� 1� 
 
 
 � N�. These equations are also too difficult to
solve analytically.

Second-Order Reduced Model

We now find a further reduced-order model of the problem by retaining only
two terms in series (4), i.e.,

��x1� x3� t�/V0 = �0�x1� t�+ x3�1�x1� t�� T�x1� x3� t�/TA = T0�x1� t�+ x3T1�x1� t�

and assume that

f�T� = f�T0�+ x3T1f
′�T0�

where f ′�T0� = df

dT

∣∣
T=T0

. Substituting these expressions in Eqs. (1a, 1b), integrating
over the plate thickness the resulting equation and also the equation obtained
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1010 D. J. HASANYAN ET AL.

by multiplying them with x3, (or equivalently taking the weight function to be
��0 + x3��1 for Eq. (1a) and �T0 + x3�T1 for Eq. (1b)) we get the following four
partial differential equations for the four unknowns �i�x1� t� and Ti�x1� t�, �i = 0� 1�.

The electrostatic Eq. (1a) yields

�

�x1

[
f�T0�

��0

�x1

]
+ 1

2h

[
f�T�

��

�x1

∣∣∣∣
x3=h

− f�T�
��

�x1

∣∣∣∣
x3=−h

]

+ f�T0��1
1
2h

∫ h

−h

�′
0�x3�

�0�x3�
dx3 = 0 (5a)

�

�x1

[
f�T0�

��1

�x1

]
+ �

�x1

[
f ′�T0�T1

��0

�x1

]
+ 3

2h2

[
f�T�

��

�x3

∣∣∣∣
x3=h

+ f�T�
��

�x3

∣∣∣∣
x3=−h

]

+ 3
2h3

{
f�T0�

∫ h

−h

x3�
′
0�x3�

�0�x3�
dx3 + T1f

′�T0�
∫ h

−h

x23�
′
0�x3�

�0�x3�
dx3

}
�1

− 3
h2

�1f�T0� = 0 (5b)

where �′
0�x3� = d�0/dx3, and �0 is assumed not to vanish. Furthermore, in the

derivation of these equations, terms containing the product �1T1 have been
neglected since these terms are of higher order in h/a than those retained in
Eqs. (5a, 5b). By following the same procedure as that used to derive Eqs. (5a, 5b)
from Eq. (1a), we obtain the following from the thermal Eq. (1b):

�2T0

�x21
+ T1

1
2h

∫ h

−h

�′�x3�
��x3�

dx3 + f�T0�

[(
��0

�x1

)2

+ �2
1

]
1
2h

∫ h

−h

�0�x3�

��x3�
dx3

+
{
T1f

′�T0�

[(
��0

�x1

)2

+ �2
1

]
+ 2f�T0�

��0

�x1

��1

�x1

}
1
2h

∫ h

−h

x3�0�x3�

��x3�
dx3

− �T0

�t

1
2h

∫ h

−h

ce�x3�

��x3�
dx3 −

�T1

�t

1
2h

∫ h

−h

ce�x3�

��x3�
x3dx3

+ 1
2h

[
�T

�x3

∣∣∣∣
x3=h

− �T

�x3

∣∣∣∣
x3=−h

]
= 0 (6a)

�2T1

�x21
+ T1

3
2h2

∫ h

−h

x3�
′�x3�

��x3�
dx3 + f�T0�

[(
��0

�x1

)2

+ �2
1

]
3
2h2

∫ h

−h

x3�0�x3�

��x3�
dx3

− 3
h2

T1 −
�T0

�t

3
2h3

∫ h

−h
x3

ce�x3�

��x3�
dx3 −

�T1

�t

3
2h3

∫ h

−h

ce�x3�

��x3�
x23dx3

+ 3
2h2

[
�T

�x3

∣∣∣∣
x3=h

+ �T

�x3

∣∣∣∣
x3=−h

]

+ f ′�T0�T1

[(
��0

�x1

)2

+ �2
1

]
3
2h3

∫ h

−h

x23�0�x3�

��x3�
dx3 = 0 (6b)

The coupled system of Eqs. (5a, 5b) and (6a, 6b) is still too difficult to solve
analytically.
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INSTABILITIES IN MICROTHERMOELECTROMECHANICAL SYSTEMS 1011

Membrane Approximation

To get qualitative results, we further reduce the number of unknown functions
by assuming that �1�x1� t� ≈ 0 and T1�x1� t� ≈ 0. Terms related to functions �1�x1� t�
and T1�x1� t� are of the order �h/a� but those involving �0�x1� t� and T0�x1� t�
are of order 1. This approximation models the MTEM as a membrane, and
is quite good for �h/a� ≤ 1/100. Several works (e.g., see [15, 16]) have used a
membrane approximation for the deformable electrode in a MEMS. Equations for
the determination of �0�x1� t� and T0�x1� t� deduced from Eqs. (5a) and (6a) by
neglecting terms involving �1 and T1 are

�

�x1

[
f�T0�

��0

�x1

]
+ 1

2h

[
f�T0�

��0

�x1

∣∣∣∣
x3=h

− f�T0�
��0

�x1

∣∣∣∣
x3=−h

]
= 0 (7a)

�2T0

�x21
+ f�T0�

(
��0

�x1

)2 1
2h

∫ h

−h

�0�x3�

��x3�
dx3 −

�T0

�t

1
2h

∫ h

−h

ce�x3�

��x3�
dx3

+ 1
2h

[
�T0

�x3

∣∣∣∣
x3=h

− �T0

�x3

∣∣∣∣
x3=−h

]
= 0 (7b)

Integrating Eq. (7a) with respect to x1 and using boundary conditions (2a), we get
the following from Eq. (7a):

��0

�x1
= V0�t�

f�T0�
∫ a

−a
�1/f�T0��dx1

(8)

Inserting Eq. (8) into Eq. (7b), and using boundary conditions (2b) we obtain the
following nonlinear and nonlocal equation in terms of non-dimensional variables:

��

�

= F��� 
�+ �

�2�

�x2
(9a)

where

F��� 
� = −�+ P0V
2�
�

/(
V0f���

[ ∫ 1

−1
�1/f����dx

]2)
� � = �T0 − TA�/TA (9b)

P0 =
V 2
0 �̃0�

TA

� � = 2h2

a2

1
Bi�h�+ Bi�−h�

� �̃0 =
1
2h

∫ h

−h

�0�x3�dx3
��x3�

�

Bi�±h� = h	�±h�

��±h�


= a2t/��c̃0�� c̃0 =
1
2h

∫ h

−h

ce�x3�

��x3�
dx3� x= x1/a� V�
�=V�
�/V0� (10a-i)

Bi�h� and Bi�−h� are the Biot numbers of the top and the bottom surfaces,
respectively. We note that equations similar to Eqs. (9) arise in combustion and
chemical reaction theory, and in the analysis of microwave heating of structural
elements [17].
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1012 D. J. HASANYAN ET AL.

Boundary and initial conditions for Eq. (9a) are

��

�x

∣∣∣∣
x=±1

= 0� ��
=0 = 0 (11)

Series Solution of Eq. (9a)

We assume that

��x� 
� =
�∑

m=0

�m�
��m�x� (12)

where �m�x� = cos��mx� with �m = �m� �m = 0�±1� 
 
 
 � are shape functions
satisfying boundary conditions (11). The application of Galerkin’s method to
Eq. (9a) gives the following nonlinear system of ordinary differential equations:

d�m
d


+ ��2m�m = Gm��0� �1� �2� 
 
 
 � �n� 
 
 
 � 
�� �m = 0�±1� 
 
 
 � (13)

where

Gm��0� �1� 
 
 
 � �n� 
 
 
 � 
� =
∫ 1

−1
�m�x�F

( �∑
n=0

�n�
��n�x�� 


)
dx

Pull-in Instability and Pull-in Voltage

Equations (9a) and (9b) imply that when P0 (or the applied initial voltage V0) is
small, the energy input into the system is sufficiently small and the heat transferred
out from the top and the bottom surfaces of the plate is enough to establish thermal
equilibrium. As P0 is increased, the heat generated increases, and it eventually
overwhelms the heat transferred out from the top and the bottom surfaces of the
plate. Thus, the thermal equilibrium can not be established. In microwave heating
or in combustion, this phenomenon is called thermal run away. Whether or not
this phenomenon occurs in a MTEMP depends upon the range of P0 (or V0) in
which the device operates and on the dependence of the electrical conductivity upon
the temperature. The maximum value of the applied voltage V0 for which the energy
input into the plate equals that radiated out of its top and bottom surfaces is called
the pull-in voltage. Said differently, when the applied voltage exceeds the pull-in
voltage, a steady state distribution of temperature in the plate can not be achieved.
The pull-in instability severely restricts the range of stable operation of a device.
Here, a mathematical model of an idealized electrostatically actuated MTEM device
has been constructed to find the pull-in voltage which is characterized in terms of
the bifurcation diagram. We delineate below the pull-in voltage for several cases.

Case I. ��/�x = 0, V�
� = 1 (i.e., V�t� = V0 = const�. In this case ��x� 
� =
��
�, and the entire plate is at the same temperature. Equations (9a) and (9b) reduce
to the ordinary differential equation

d�

d

= −�+ 1

4
P0 exp��� (14)
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INSTABILITIES IN MICROTHERMOELECTROMECHANICAL SYSTEMS 1013

with initial condition

��
=0 = 0 (15)

From a numerical solution of Eqs. (14) and (15) computed with
MATHEMATICA, we conclude the following: (a) if P0 > PI

0∗ = 4/e�≈1
471� no
steady-state solution of Eq. (14) exists, and starting from the initial temperature
��0� = 0, the temperature continues to increase with time; (b) For P0 < PI

0∗ =
4/e�≈ 1
471� the problem has two steady-state solutions �01 and �02 that satisfy the
transcendental equation

−4�+ P0 exp��� = 0 (16)

Assuming that �01 < �02, we can verify that the first solution is stable,
and the second is unstable. Figure 2 exhibits the bifurcation diagram for this
problem. For an initial value ��0� = �0 < �01 and for P0 < PI

0∗�=4/e�, the solution
monotonically approaches the stable branch, and for P0 > PI

0∗�=4/e� it increases
monotonically with time, and becomes unbounded. In the latter case, the device
components often stick together or break leading to its failure. This instability
severely restricts the range of stable operation of the device.

The time history of evolution of the temperature plotted in Figure 3 shows
that for the parameter P0 = 1
47 < PI

0∗ the temperature � stays bounded, and for
P0 = 1
5 > PI

0∗ , the temperature � becomes unbounded as time increases. Thus the
pull-in instability occurs at P0 = PI

0∗ .

Case II. ��/�x �= 0 and V�t� = V0 = const. i.e., V�
� = 1. In this case there is
a constant step voltage V0 applied instantaneously at the left edge of the plate. The
number i of terms retained in the series expansion (12) depends upon the values of
P0 and �. When P0 is close to P0∗ we need to retain more terms in (12) to satisfy the
convergence condition, ��i+1�x� 
�− �i�x� 
��/��i�x� 
�� < 10−3, when x ∈ �−1� 1� and

 > 0. If P0 < P0∗ the convergence condition is satisfied for i = 4.

The numerical solution of Eqs. (12) and (13) reveals that values of parameter �
(for real materials � ∈ �10−7� 1�� significantly influence the critical value P0∗ = PII

0∗���

Figure 2 Bifurcation diagram for the membrane model of the MTEMP.
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1014 D. J. HASANYAN ET AL.

Figure 3 Dependence of non-dimensional temperature � on non-dimensional time 
.

of the parameter P0 for which the temperature becomes unbounded; values of �
and corresponding values of P0∗ are listed in Table 1. For � ≤ 0
01� PII

0∗ is essentially
unchanged and equals 1.5. For � > 0
01, PII

0∗ is a monotonically increasing function
of �; when � is increased from 0.01 to 0
1, PII

0∗ increases by 22.5%.
For fixed values of the parameter P0 and three values of the parameter �, we

have plotted in Figures 4(a) and (b), the evolution of the temperature ��0� 
� at the
centroid of the specimen. These results confirm that for P0 < PII

0∗��� the solution
of Eqs. (9a) and (9b) stays bounded, and for P0 > PII

0∗��� the solution becomes
unbounded. We note that for the three values of � considered, the value of P0 is
less than its critical value for results plotted in Figure 4(a). The temperature stays
bounded till a non-dimensional time of 25 and seems to have reached essentially
a steady value. However, for results plotted in Figure 4(b), the value 1.81 of P0

exceeds its critical value for all three values of �. The temperature of the centroid
continues to increase monotonically, and its rapid rate of increase at 
 = 5� � = 10−5

and 0.05 is evident from the results of Figure 4(b). Recall that P0 is proportional to
the square of the voltage difference applied to the two end faces of the MTEMP.

In Figures 5(a)–(c) we show, for P0 = 1
47 < PII
0∗�0
1�, the spatial variation

of the non-dimensional temperature ��x� 
� for three different values of � and at
three non-dimensional times 
. In these cases the non-dimensional temperature
��x� 
� stays bounded. Furthermore, we can conclude that for increasing values of
parameter �, the non-dimensional temperature ��x� 
� at a point decreases, and the
temperature throughout the specimen eventually becomes uniform, except at the two
end faces.

Figures 6(a) and (b) evince the spatial variation of ��x� 
� for P0 = 1
81 >
PII
0∗�0
1�= 1
803, three values of parameters � and two values of the non-dimensional

Table 1 Dependence of PII
0∗ ��� on parameter �

� 10−5 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

PII
0∗ ��� 1.5 1.51 1.537 1.568 1.599 1.632 1.666 1.7 1.735 1.77 1.803
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Figure 4 (a) P0 = 1
47 < PII
0∗ �10

−5� = 1
5; (b) P0 = 1
81 > PII
0∗ �0
1� = 1
803, and three values of the

parameter �, evolution of ��0� 
� with non-dimensional time 
.

time 
. From these plots we can see that an increase in the value of parameter �
decreases the non-dimensional temperature ��x� 
�, and the temperature becomes
unbounded with an increase in the non-dimensional time 
. The scales along the
vertical axis in Figures 5 and 6 are different. Whereas for results depicted in Figure 5
the maximum value of ��x� 30� is about 0.92, for results exhibited in Figure 6 ��x� 6�
and ��x� 6� equal 1.33 and 2.05 respectively. Thus when P0 > PII

0∗ , the temperature
at every point of the MTEMP becomes very large.

Case III. ��/�x = 0, V�
� = 


0
H�
0 − 
�+H�
− 
0�. The applied voltage V�
�

increases linearly from 0 to 1 in non-dimensional time 
0 and subsequently V�
� = 1
for 
 > 
0. The MTEMP is at a uniform temperature. We investigate the effect of
the rise time 
0 on the pull-in instability. The temperature of the body increases
uniformly with the passage of time. Values of P0∗ = PIII

0∗ �
0� for five different values
of the parameter 
0 are listed in Table 2. It is clear that the rise time of the applied
voltage does not affect much the critical value PIII

0∗ �
0� since an increase in the value
of the parameter 
0 from 0 to 10 increases PIII

0∗ �
0� by only 0.25%.
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Figure 5 For P0 = 1
47 < PII
0∗ �10

−5� and three values of the parameter �, spatial distribution of the
temperature at non-dimensional time (a) 
 = 2, (b) 
 = 6, and (c) 
 = 30.

Figures 7(a) and (b) exhibit the evolution of the non-dimensional temperature
��
� with the non-dimensional time 
. When P0 = 1
5 > PIII

0∗ �0� = 1
471, we see that
an increase in the rise time enhances the initial temperature rise, eventually the
temperature rises unboundedly, and the system becomes unstable. For P0 = 1
47 <
PIII
0∗ �0� = 1
471, an increase in the value of 
0 from 0 to 3 has the opposite effect on

the initial temperature rise, and eventually the temperatures for the two cases reach
the same steady-state value. The initial rise time of the applied voltage has virtually
no effect on the critical value of P0∗ .

Figure 6 For P0 = 1
81 > PII
0∗ �0
1� = 1
803 and three values of the parameter �, spatial distribution of

the temperature at non-dimensional time (a) 
 = 5, and (b) 
 = 6.
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Table 2 Dependence of the value of PIII
0∗ �
0� on the rise time 
0


0 0 0.01 0.1 1 10

PIII
0∗ �
0� 1.471 1.47425 1.47426 1.47428 1.47478

Case IV. ��/�x �= 0, V�
� = cos��
�. For the case of the applied voltage
varying harmonically with the non-dimensional frequency �, Table 3 lists critical
values of P0∗ = PIV

0∗ �����. For a fixed value of �, increasing � from 10−5 to 10−2 has
virtually no effect on the value of P0∗ . However, changing the frequency � of the
applied voltage from 0.01 to 10 increases the value of P0∗ from 1.54 to 2.999, i.e., by
a factor of almost 2.

Results plotted in Figures 8(a) and (b), demonstrate that for a harmonically
applied voltage, the temperature rise in the plate is also oscillatory and the
amplitude of oscillations stays bounded for P0 = 2
5 < PIV

0∗ �0� 1� but becomes
unbounded when P0 = 3
52 > PIV

0∗ �0� 1�. For the stable solution plotted in
Figure 8(a), the frequency of � is much less than that of the applied voltage V�
�. For
the unstable solution depicted in Figure 8(b), the time period of initial oscillations
is considerably more than that of the applied voltage, and the positive amplitude
of successive oscillations continues to increase. The temperature becomes negative
because the sum of the heat lost to the environment and that conducted away from
the point exceeds the heat produced there due to the electric current.

The four cases (I)–(IV) clearly evince that the critical value PI
0∗ of P

I
0 for case I

is less than that for the other three cases.

Dependence of the Pull-in Voltage on Gradient
of the Plate’s Material Properties

We now show that by suitably varying material properties in the thickness
direction, we can regulate the pull-in voltage. We assume that the plate is made of
two constituents, and use the rule of mixtures to derive effective properties of the

Figure 7 (a) P0 = 1
5 > PIII
0∗ �0� = 1
471; (b) P0 = 1
47 < PIII

0∗ �0� = 1
471, and two values of the rise
time 
0, evolution of ��0� 
� with non-dimensional time 
.
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Table 3 Dependence of PIV
0∗ ����� on parameters � and �

� = 10−5 � = 0
01

� PIV
0∗ ����� PIV

0∗ �����
0 1.51 1.511
0.01 1.54 1.547
0.1 2.041 2.046
1 2.829 2.844
10 2.999 3.02

FGM. That is,

P�x3� = P1��1− P2/P1���x3 + h�/�2h��m + P2/P1� (17)

where P1 and P2 are values of the material parameter for phases 1 and 2,
respectively, and m�≥ 0� is the volume fraction parameter. Thus the bottom surface
x3 = −h of the MTEMP is comprised of material 1, and the top surface x3 = h of
material 2. We presume that for the FG plate, the pull-in voltage for Case I is the
least out of the four cases studied above, and assume that the temperature of the
plate is a function of time only.

It follows from results given in the previous section that for the critical value
P0∗ of P0, the solution of Eq. (9a) becomes unbounded for P0 > P0∗ . By setting
P0 = P0∗ we get the following expression for the pull-in voltage V∗:

V 2
0∗ �̃0�

TA

= P0∗ (18)

For the two-phase mixture, the non-dimensional pull-in voltage V∗ is given by

V∗��� ��m� ≡ V 2
0∗

�1+ Bi�V 2
01

=
[∫ 1

−1

�1− ���0
5+ 0
5y�m + �

�1− ���0
5+ 0
5y�m + �
dy

]−1

(19)

Figure 8 (a) P0 = 2
5 < PIV
0∗ �0� 1�; (b) P0 = 3
52 > PIV

0∗ �0� 1� evolution of ��0� 
� with non-dimensional
time 
.
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Figure 9 (a) � = 0
1; (b) � = 0
9; (c) � = 1
5 and three values of the electrical conductivity ratio �, the
dependence of the pull-in voltage V∗ on the volume fraction exponent m.

where Bi = Bi2/Bi1, � = �02/�01, � = �2/�1; V 2
01 = P0∗TAa

2�1Bi1�−h�/�h2�01�,
y= x3/h; Bi1 = Bi�−h� and Bi2 = Bi�h� are the Biot numbers for phases 1 and 2
respectively; and V01 is the pull-in voltage for a homogeneous plate made of
material 1. In Figures 9(a)–(c) the dependence of the non-dimensional pull-in
voltage V∗ on the volume fraction parameter m for different values of the non-
dimensional electrical conductivity � and the non-dimensional thermal conductivity
� is exhibited. It is clear that the volume fraction parameter m and other material
parameters (such as � and �) strongly influence the pull-in voltage. For � = � = 1
5,
the volume fraction exponent m has a negligible effect on the pull-in voltage V∗.
The pull-in voltage of a FG plate is quite different from that of the homogeneous
plate. By choosing an appropriate value of the volume fraction exponent m and
materials of the two phases, one can control the pull-in voltage of the MTEM
device.

CONCLUSIONS

We have considered the Joule heating while studying the pull-in instability
in an electrically and thermally conducting functionally graded flat plate.
Mathematical models of the problem of different complexity have been developed.
It has been shown that even the simplest model requires solving simultaneously
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two coupled nonlinear partial differential equations. Depending upon the initial
conditions and values of material parameters, the solution of these equations may
be stable or unstable. The unstable solution corresponds to the situation when the
temperature of the body continues to rise unboundedly in time. The minimum value
of the applied voltage that results in the temperature rising monotonically to infinity
is called the pull-in voltage. It was found that the pull-in voltage can be regulated
by varying volume fractions of the two constituents through the thickness of a
functionally graded plate. This is most likely the first work to consider both Joule’s
heating and gradation of material properties in studying the pull-in instability in
micro-thermo-electro-mechanical plates.
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