
Journal of Thermal Stresses, 33: 79–96, 2010
Copyright © Taylor & Francis Group, LLC
ISSN: 0149-5739 print/1521-074X online
DOI: 10.1080/01495730903409235

FREE VIBRATION OF THERMALLY PRE/POST-BUCKLED
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Axisymmetric deformations of a uniformly heated pre-buckled and post-buckled thin
circular plate reinforced with shape memory alloy (SMA) fibers placed in the radial
direction only are studied. Effects of von Kármán’s nonlinearities are incorporated in
the problem formulation. The matrix is assumed to be linear thermoelastic and the
thermo-mechanical response of the SMA is modeled by one-dimensional constitutive
relation. By assuming that plate’s deflections can be additively decomposed into
three parts, namely radial displacements of a pre-buckled plate, radial and lateral
displacements during post-buckling deformations, and infinitesimal radial and lateral
displacements during vibration of a post-buckled plate, boundary-value problems for
determining these displacements for plate edges either simply supported or clamped have
been formulated. The coupled nonlinear differential equations have been numerically
solved by the shooting method that has been verified by good agreement between the
presently computed results with those available in the literature. The dependence of
the first three frequencies upon the temperature rise, for both pre-buckled and post-
buckled plates, has been delineated. Characteristic curves relating the frequency with
the temperature rise for different values of the volume fraction and the pre-strain in
the SMA fibers are exhibited. It is found that reinforcement of an aluminum plate with
SMA fibers changes plate’s natural frequencies and enhances its resistance to buckling
due to temperature rise.
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INTRODUCTION

Plates are key components in many structural applications. Buckling
and vibration of plates due to thermal loads play important roles in the
design and analysis of aerospace, off-shore, under-water, nuclear, and electronic
components/structures. Static and dynamic responses of plates and shells exposed
to thermal environments have been reviewed by Tauchert [1] and Thorton [2].
Even though there have been extensive investigations on the thermal buckling of
plates, the dynamic response of post-buckled circular plates has not been studied
thoroughly. The vibration response of flat and curved panels subjected to thermo-
mechanical loads has been studied by Librescu et al. [3, 4]. Li and Zhou [5, 6]
used the shooting method to analyze vibrations of uniformly heated orthotropic
circular/annular plates. Lee and Lee [7] examined vibrations of pre-buckled and
post-buckled anisotropic plates by using the first-order shear deformation plate
theory (FSDT). Free vibration response of a thermally buckled piezo-laminated
composite plate has been investigated by Oh et al. [8] by using the finite element
method (FEM). Infinitesimal vibrations of a post-buckled functionally graded plate
have been studied by Park and Kim [9], and of a statically deformed pre-buckled or
post-buckled plate by Li and Batra [10].

Studies [3–10] on vibration of heated thin plates and shells reveal that
natural frequencies of a thermally loaded structure are noticeably affected by the
temperature rise. However, effects of temperature rise on free vibration of plates
embedded with shape memory alloy (SMA) fibers will be more significant because
the temperature rise will change the pre-strain in the fiber and may induce a
phase transformation in the SMA fibers that will alter their mechanical properties.
Many research efforts have contributed to our understanding of the vibration and
the buckling control of plates reinforced with SMA fibers. Rogers et al. [11–13]
experimentally and analytically investigated the acoustic and vibration control of an
SMA hybrid composite plate made of graphite/epoxy and NiTiNol/epoxy laminas.
Ro and Baz [14] studied effects of activating NiTiNol fibers on the buckling
and vibration of SMA reinforced composite plate by the FEM coupled with
experimental observations. Ostachowicz et al. [15, 16] used the FEM to examine
in detail effects of embedding SMA actuators on the natural frequencies and
thermal buckling of laminated plates. Based on the FSDT, thermal buckling and
linear vibration of pre-buckled and post-buckled SMA fiber-reinforced laminated
composite plates were examined by Zhong et al. [17, 18] and Park et al. [19, 20].
They used the FEM to analyze the influence of the volume fraction and the initial
strain of SMA fibers on natural frequencies and buckling deflection of plates.
It should be noted that they used experimental data to model the recovery stress and
Young’s modulus versus the temperature rise instead of an analytical constitutive
relation for the SMA, and found that the SMA fibers could greatly reduce or
completely eliminate the post-buckling deflection for appropriate values of the
temperature rise.

Lee et al. [21] used the commercial FE computer code ABAQUS to analyze
laminated composites shells and plates with embedded SMA wires, and showed
that the activation of SMA wires due to heating increases the critical buckling
temperature and decreases the thermal buckling deformation. Thompson and
Loughlan’s extensive experimental and numerical simulations [22, 23] indicate that
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recovery forces in pre-strained SMA fibers produced by thermal activation enhance
the buckling temperature for various laminated plates and reduce the out-of-
plane displacement of the post-buckled laminates. More recently, Zhang et al. [24]
studied vibration of laminated composite plates with embedded SMAs by using
the Rayleigh-Ritz method. In the aforementioned investigations, the SMA fiber-
reinforced composite structures are either beams or rectangular plates.

We study here thermally induced pre-buckling and post-buckling deformations
of a circular plate reinforced with SMA fibers. We use the one-dimensional
constitutive relation proposed by Brinson [25] to find the recovery stress in the SMA
fiber. The plate edge is either simply supported with boundary points restrained
from moving in the radial direction or clamped. The strain-displacement relations
incorporate von Kármán nonlinearities and the stress-strain relation is taken to be
linear. The nonlinear governing equations are numerically solved with the shooting
method to analyze the pre-buckling and the post-buckling deformations of the plate.
Numerical results presented herein include the thermal post-buckled equilibrium
paths and frequencies of free vibrations of post-buckled configurations.

PROBLEM FORMULATION

We consider a thin composite circular plate of radius b and thickness h
composed of an isotropic and homogenous matrix, and reinforced shape memory
alloy (SMA) fibers in the radial direction. A cylindrical co-ordinate system �r� �� z�
located in the mid-surface of the plate as shown in Figure 1 is used to describe
plate’s deformations. The material of plate is considered to be polar orthotropic.
We assume that a steady uniform temperature change T is applied to the plate, and
the plate particles at its boundary are restrained from moving within the mid-surface
so that in-plane thermal stresses are induced due to the temperature change.
We study axisymmetric free vibration of the pre-buckled and the post-buckled
heated plate by incorporating the von Kármán nonlinearity in the Kirchhoff plate
theory. The strain-displacement relations are
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where u�r� t�� w�r� t� are the radial and the transverse displacements of a point on
the mid-surface; t the time; �r and �� the radial and the circumferential strains,
respectively; �r� the shear strain.

We assume that the material response for infinitesimal deformations of the
elastic composite plate can be adequately described by the following constitutive
equations [17–20]:
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In Eqs. (2) and (3), Er and E� are Young’s moduli in the radial and the
circumferential directions, respectively; 
r and 
� the thermal expansion coefficients;
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Figure 1 Schematic sketch of the circular plate with SMA fibers embedded in the radial direction.

	r� and 	�r Poisson’s ratios; �T = T − T0 the temperature rise; T0 the initial
temperature; �r and �� normal stresses in the radial and the circumferential
directions; �s the recovery stress induced by the inverse martensitic transformation
of the SMA due to the temperature change �T ; Vs the volume fraction of the
SMA fibers taken to be uniform in the plate. The assumptions of Vs being constant
and the stress in the SMA affecting only �r greatly simplify the problem. If SMA
reinforcements are wires then for Vs to be constant either their diameter will need to
decrease with the radial coordinate or the spacing between two adjacent wires will
have to increase. In Eqs. (2) and (3) we have assumed that Ez = Er .

Homogenization techniques for deriving effective properties of composites
with SMA as reinforcements have been discussed, for example, in [31–35]. Effective
values of material parameters in terms of those of the matrix and the SMA given in
Appendix A are derived by the mechanics of materials approach.

Using one-dimensional constitutive equations for SMA, the recovery stress of
SMA fibers is given by the following relation [21, 25]:

�s = �E��− E�0���0 +���s −��0�s0 +��T − T0� (4a)

E�� = EA + �EM − EA�� ��� = −�LE�� (4b)
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where E��, ���, �, � �0 and �L are, respectively, Young’s modulus, the phase
transformation coefficient, the coefficient of thermal expansion, the volume fraction
of martensite, the initial axial strain, and the maximum residual strain of SMA
fibers. Quantities with the subscript “0” denote their values in the initial state
of SMA. EM and EA are, respectively, Young’s moduli of the SMA in the pure
martensite and the pure austenite phases. The parameter  defined in the range
�0� 1� is divided into the stress-induced part s and the temperature-induced part T .
Here we only consider temperature rise.

For T > As and CA�T − Af� < �s < CA�T − As�, � s and T are computed
from the following relations [25]:
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where As and Af denote the austensite transformation start and finish temperature
respectively, CA equals the slope of the curve of the critical stress for austensite phase
transformation as function of temperature, aA = �/�Af − As�, and T0 is the initial
volume fraction of martensite.

Substitution from Eq. (1) into Eqs. (2) and (3), and integrating their zeroth
order and first order moments with respect to the thickness coordinate z over the
plate thickness give following expressions for the membrane forces and the bending
moments:
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where k = E�/Er = 	�r/	r� is the ratio of elastic moduli, � = 
�/
r is the ratio of
coefficients of thermal expansion, C = 12D/h2 and D = Erh

3/�12�1− 	�r	r��� are
the in-plane and the flexural rigidities of the plate.

We introduce the following non-dimensional quantities.

�x� U�W� = �r� u� w�/b� � = b/h (7a)

� = 12�2�1+ 	�r��
r�T� � = �	�r + �k�/�1+ �	�r� (7b)

N ∗ = �sVs�1− 	�r	r��/Er� � = �t/b2��Dr/�h�
1/2 (7c)

where �, defined in Appendix A, is the mass density of the homogenized plate.
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By neglecting the in-plane and the rotary inertia and using Hamilton’s
principle, we obtain the following partial differential equations and the associated
boundary conditions governing free vibration of the circular plate in terms of non-
dimensional variables [5, 6, 10].
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The parameter c is a small positive real number introduced to avoid a singularity at
x = 0 while computing numerical results [5, 29], and K = 0 and 1/	�r , respectively,
for the clamped and the simply supported edges. Boundary conditions (10b)
and (10c) imply that the transverse shear force Qx = −(

�3W
�x3

+ 1
x
�2W
�x2

− 1
x2

�W
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)
vanishes

at x = c. In the limit of c approaching zero boundary conditions (10) are satisfied
at the center of a solid circular plate.

GOVERNING EQUATIONS FOR INCREMENTAL DISPLACEMENTS

In order to study infinitesimal vibration and static small deformations of the
thermally buckled circular plate we assume that the solution of Eqs. (7)–(10) can be
expressed as [3–6, 10]

U�x� �� = U0�x�+ Us�x�+ Ud�x� �� (12)

W�x� �� = Ws�x�+Wd�x� �� (13)

where U0�x� is the in-plane radial displacement of the pre-buckled plate,
Us�x� and Ws�x� are the radial and the circumferential displacements of the
thermally post-buckled plate, Ud�x� �� and Wd�x� �� are infinitesimal displacements
superimposed on the thermally buckled configuration of the plate.

The displacement U0 is the solution of the boundary-value problem
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whose analytical solution is [5, 6, 10]
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where B = ���1− ��/12�2 − N ∗�. In the limit c → 0, Eq. (16) gives [10]
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For � = 1 and N ∗ = 0 Eq. (14) with boundary conditions given by Eq. (15) has a
trivial solution U0 = 0. For � �= 1 and N ∗ = 0, the problem reduces to that studied
in [10]. Thus the present work differs from our earlier work [10] in N ∗ not being
zero because of the stress induced in the SMA.

The incremental displacements, Us�x� and Ws�x�, from the buckled to the
post-buckled configurations are determined by solving the following non-linear
boundary-value problem [10]:
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Us = 0�
dWs

dx
= 0�

d3Ws

dx3
+ 1

x

d2Ws

dx2
= 0� at x = c (20)

Us = 0� Ws = 0�
dWs

dx
+ K

d2Ws

dx2
= 0� at x = 1 (21)

Deformations of the SMA affect Us�x� and Ws�x� through the presence of U0 in
Eq. (19).

For studying infinitesimal vibration of the post-buckled plate, we neglect
terms nonlinear in Ud�x� �� and Wd�x� ��. Substitution from Eqs. (12)–(13) into
Eqs. (8)–(11), using Eqs. (18)–(21), we obtain the following linear homogeneous
partial differential equations for finding Ud�x� �� and Wd�x� ��.
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Thus deformations of SMAs influence Ud�x� �� and Wd�x� �� because U0 and N ∗

appear in Eq. (23).
We assume that Eqs. (22)–(25) have harmonic solutions [3–6, 10]

Ud�x� �� = ��x� cos����� Wd�x� �� = ��x� cos���� (26)

where
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is the non-dimensional frequency and � the dimensional frequency. Substitution
from Eq. (26) into Eqs. (22)–(25) yields the following ordinary differential equations
for amplitudes ��x� and ��x�:
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We note that Eqs. (27)–(30) give amplitudes of free vibration of SMA fiber-
reinforced composite plate with initial radial and lateral displacements U0�x�+ Us�x�
and Ws�x�, respectively. However, before solving Eqs. (27)–(30), we need first to
solve the non-linear and coupled Eqs. (18)–(21) for Us�x� and Ws�x�. If let Us�x� =
Ws�x� = 0, or the plate has not buckled, then Eqs. (27)–(30) can be reduced to
governing equations for the linear vibration of the pre-buckled plate.
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Table 1 Material properties of the SMA fibers

CM = 8MPa/�C Mf = 9�C � = 0�55MPa/�C �L = 0�067
CA = 13�8MPa/�C Ms = 18�4�C 
s = 10�26× 10−6/�C 	s = 0�33
�cr
s = 100MPa As = 34�5�C �s = 6500 kg/m3 EM = 26�3× 103 MPa.

�cr
f = 170MPa Af = 49�C EA = 67× 103 MPa

NUMERICAL RESULTS AND DISCUSSION

Because of our inability to analytically solve the nonlinear boundary-value
problem defined by Eqs. (18)–(21) we solve it numerically with the shooting method
that replaces the two-point boundary-value problem by a sequence of initial-value
problems. As described in [5, 6, 10, 26], values of functions at the initial point,
x= c, are estimated to start the computations. These are iterated upon with modified
values obtained by the secant method until the prescribed boundary conditions at
the final point x = 1 are satisfied. It should be noted that the constitutive Eq. (4)
is nonlinear and an explicit form for the recovery stress cannot be obtained; it is
determined by the Newton–Raphson method.

While solving the problem numerically, we set initial temperature T0 = 20�C,
� = b/h = 30, and take c = 0�001. The matrix of the composite plate is aluminum
for which �m = 2800kg/m3, Em = 70GPa, 	m = 0�3, 
m = 23�4× 10−6/�C, and
material properties the NiTiNol SMA, taken from [25], are listed in Table 1.

The numerical algorithm has been verified by comparing computed results for
a few problems with those available in the literature; e.g., see Tables 1–3 of [10].
Results presented emphasize effects of the initial pre-strain and the volume fraction
Vs of SMA fibers on the pre- and the post-buckling deformations of the plate.

Thermal Buckling

The post-buckling equilibrium paths, in terms of the maximum deflection
A=W�0� and the thermal load �, of clamped and simply supported plates for known
values of the SMA volume fraction, Vs, are plotted in Figure 2 with �0 = 0�04 as

Figure 2 Equilibrium paths of post-buckled circular plate for specified values of Vs ��0 = 0�04�.
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Figure 3 Equilibrium paths of post-buckled circular plate for different values of �0 �Vs = 10%�.

the initial strain in the SMA fiber. It is clear that an increase in the SMA volume
fraction noticeably reduces the post-buckling deformation of the composite plate,
and enhances its critical buckling temperature. For a high SMA volume fraction, the
thermally buckled plate can revert to its unbuckled configuration in the temperature
range of the inverse martensite phase transformation, and the plate will again buckle
with further increase in the temperature.

For Vs = 10%� 20% and various value of �0, results exhibited in Figures 3
and 4 delineate effects of the thermal load � on the central deflection A. These
evince that, for a simply supported plate, the initial strain in the SMA fibers has
a little influence on the critical buckling temperature but a significant effect on the
thermally induced post-buckling deformation because the inverse martensite phase
transformation of SMA fibers occurs during the post-buckling region. However,
for the clamped plate with Vs = 20%, the critical buckling temperature can be
enhanced by increasing the pre-strain in the SMA fibers. This is because an increase
in �0 increases the temperature at which the inverse martensite phase transformation
is completed. It implies that the buckling occurs after the martensite phase

Figure 4 Equilibrium paths of post-buckled circular plate for different values of �0 �Vs = 20%�.
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Figure 5 Dependence of the natural frequencies of the pre/post-buckled plate upon the temperature
rise.

has completely been transformed into the austenite phase. Therefore, in general,
an increase in either �0 or Vs will decrease the post-buckling deflection of the plate
due to the higher recovery stress in the SMA fibers. These results are qualitatively
similar to those for rectangular plates obtained by Zhong [17, 18], Lee [21] and Park
[19, 20].

Vibration

By simultaneously solving boundary-value problems defined by Eqs. (18)–(21)
and (27)–(30), frequencies and the corresponding mode shapes of a thermally
pre-buckled and post-buckled SMA fiber reinforced circular plate with the
boundary either simply supported or clamped are obtained. Figures 4–7 exhibit the
dependence of the first three natural frequencies upon the thermal load parameter

Figure 6 For �0 = 0�04, dependence of the natural frequencies of the pre/post-buckled clamped
circular plate upon the temperature rise.
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Figure 7 For �0 = 0�04, dependence of the natural frequencies of the pre/post-buckled simply
supported circular plate upon the temperature rise.

� with and without the SMA fibers in the pre-buckling and the post-buckling
regions. From the results shown in Figure 5, we conclude that the first three lowest
frequencies of a pre-buckled plate without SMA fibers decrease monotonically
with an increase in the temperature, and, as expected, the fundamental frequency
approaches zero at the critical temperature. In the post-buckling region, the
frequency of the plate increases with an increase in the temperature because the
large deflection of the post-buckled plate increases the bending stiffness of the plate
[10, 19, 20].

However, for the clamped plate reinforced with the SMA fibers, frequencies
decrease first, then increase or adjust, and then decrease in the pre-buckling
region for Vs = 25% as presented in Figure 6. This phenomenon results from
the increase of the bending stiffness due to the recovery stress of SMA with

Figure 8 For �0 = 0�04 and different values of Vs , fundamental frequencies versus the temperature rise
for the circular plate.
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Figure 9 For �0 = 0�04 and different values of Vs , an expanded view of the fundamental frequencies
versus the temperature rise for the circular plate presented in Figure 8.

Figure 10 For Vs = 20% and different values of �0, the dependence of the first three lowest frequencies
upon the non-dimensional temperature rise for the clamped circular plate.
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initial strain [17–20]. In addition, as seen from Figure 6, the temperature range of
pre-buckling deformations can be enlarged because of the temperature activation
of the embedded SMA fibers. For relatively small volume fractions of SMA fibers,
frequencies change in both the pre-buckling and the post-buckling regions, but for
relatively large volume fractions of SMA fibers, frequencies adjust only in the pre-
buckling region. Frequencies of the simply supported SMA-reinforced plate only
decrease in the pre-buckling region as presented in Figure 7. This is because the
start temperature of the inverse martensite transformation is larger than the critical
buckling temperature for the simply supported plate; thus frequencies adjustment
including the control of buckling as discussed in the previous section can only be
seen in the post-buckling regime.

Figure 8 displays variation of the fundamental frequency of the clamped and
the simply supported plates in the pre- and the post-buckled regions for specified
values of Vs. It is evident that with an increase in Vs the fundamental frequency is
reduced in the post-buckling region because the increased recovery force depresses
the post-buckling deflection (Cf. Fig. 2). In Figure 9 we have plotted an enlarged

Figure 11 For Vs = 20% and different values of �0, the dependence of the first three lowest frequencies
upon the non-dimensional temperature rise for the simply supported circular plate.
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view of the local part of the frequency-temperature curves in the pre-buckling region
shown in Figure 8. It is clear that the frequency decreases with an increase in the
value of Vs, which primarily is due to the increase of the plate weight and the
nonexistence of the recovery stress in SMA fibers as noted by Park et al. [19].
For Vs = 20%, we have exhibited in Figures 10 and 11 the influence of the pre-strain
in the SMA fibers on the first three lowest frequencies. From Figure 10 we see
that the adjustment for the frequency of clamped plate can be realized in the pre-
buckling region because the start temperature of inverse martensite transformation
is less than the critical buckling temperature. Along with the increase in values of the
pre-strain of SMA the pre-buckling region is extended. Nevertheless, as mentioned,
SMA fibers embedded in the simply supported plate are activated in the post-
buckling region. The variation of frequencies of the plate with an increase in the
SMA volume fraction, as shown in Figure 11, is quite interesting.

CONCLUSIONS

Free vibrations of circular plates reinforced with SMA (NiTiNol) fibers in
the radial direction and the plate heated uniformly have been numerically analyzed
with the shooting method when the plate has or has not buckled and the plate
boundary is either simply supported or clamped. Effects of the volume fraction and
the pre-strain in the SMA fibers on the thermal post-buckling deflection and the
natural frequencies have been delineated. For a simply supported plate points on
the boundary are restrained from moving radially. It is found that the embedding
of SMA fibers in a circular plate increases the critical buckling temperature and
decreases the post-buckling deflection. However, it has a minimal effect on the
critical buckling load but decreases the post-buckling deflection of the simply
supported circular plate. This is because the start temperature of inverse martensite
phase transformation of the NiTiNol is less than the critical buckling temperature
of the plate. The recovery force produced by the pre-strained SMA fibers when
stimulated by heating significantly increases the critical buckling temperature for a
clamped circular plate, and the recovery force is enhanced by increasing values of
both the initial strain and the volume fraction of SMA fibers.

For several values of the pre-strain and the volume fraction of SMA
fibers, the three lowest natural frequencies of SMA fiber-reinforced circular plate
both in the pre-buckling and the post-buckling regions have been computed.
The frequencies increase in the pre-buckling region for the clamped plates and
decrease it in the post-buckling region for the simply supported plate. This is due
to the increase in the weight of the plate and the decrease in the deflection caused
by the SMA fibers [19, 20]. Thus the thermal buckling and the vibration response
can be efficiently controlled by adjusting values of the volume fraction of SMA, the
pre-strain in the SMA fibers and the temperature rise.

APPENDIX A

Adopting the mechanics of materials approach, material parameters for the
composite are assumed to be related to those of its constituents by the following
relations [17–20]:

Er = EmVm + EsVs = Em�1− Vs�+ EsVs (A-1)
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E� =
EmEs

EmVs + EsVm

= EmEs

EmVs + Es�1− Vs�
(A-2)

	r� = 	mVm + 	sVs = 	m�1− Vs�+ 	sVs (A-3)

	r� = 	�rk0� k = E�/Er (A-4)


r =
Em
mVm + Es
sVs

Er

= Em
m�1− Vs�+ Es
sVs

Er

(A-5)


� = 
mVm + 
sVs = 
m�1− Vs�+ 
sVs (A-6)

� = �mVm + �sVs = �m�1− Vs�+ �sVs (A-7)

where subscripts ‘m’ and ‘s’ indicate quantities for the matrix and the SMA fiber,
respectively.
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