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a b s t r a c t

This work deals with the transient hydroelastic analysis of a sandwich beam which represents a boat
hull. The beam is subjected to slamming pressure while it enters into water with constant vertically
downward velocity. A coupled hydroelastic finite element model is developed using higher order shear
and normal deformation theories for the faces and the core of the beam and the velocity potential theory
for the fluid. Transient responses of the beam for transverse deflection and stresses are studied. Dynamic
failure analysis has been carried out to investigate the initiation and cause of the failure of the beam due
to slamming load.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Because of high bending stiffness to weight and strength to
weight ratios, sandwich structures with fiber reinforced composite
faces have become potential candidates for boat hulls and sub-
mersible vehicles [1]. When a boat or marine vessel sails at high
speed, the part of the bottom face of the vessel emerges out of the
water and reenters into the water. This induces large impact force at
the bottom of the boat hull. Such force is generally called slamming
force. This slamming force can attain very high peak value within a
very short duration and cause the boat to undergo transient
vibrations leading to damage initiation at the bottom of the hull.
A good account of research has been carried out on the slamming of
bottom hulls of marine vessels. For example, Bishop et al. [2] and
Belik et al. [3] investigated the response of beam like ship structures
due to slamming pressure. Lee and Leonard [4] carried out a finite
element analysis of structures floating or moored in a wave in the
time domain. Broderick and Leonard [5] investigated the nonlinear
interaction between fluid-filled membranes and ocean waves using
boundary element model for the fluid and finite element model for
the membrane structure. Lin and Ho [6] presented numerical and
experimental analysis for the two-dimensional water entry of a
wedge into initially calm water. Rassinot and Mansor [7] presented
a method to determine the hull bending moment. Faltinsen [8]
ll rights reserved.
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theoretically studied the effect of hydroelasticity on ship slamming
by developing a hydroelastic beam model. Landa et al. [9] carried out
an analytical study to investigate the effect of slamming pressure on
the interlaminar behavior of ship panels made of composite materi-
als. Mei et al. [10] presented the analytical solutions for the water
impact of general two-dimensional bodies entering into initially calm
water. Lu et al. [11] and Xiao and Batra [25] carried out an
hydroelastic analysis of beam subjected to water impact employing
boundary element method for the fluid and finite element method
for the structure. Battistin and Iafrati [12] estimated the hydrody-
namic loads acting on the two-dimensional and axisymmetric bodies
entering into the water using boundary element method. Sun and
Faltinsen [13] presented a boundary element method to simulate the
water impact of horizontal circular cylinders. Korobkin et al. [14]
developed a finite element model for hydroelastic analysis of beam
utilizing the Wagner theory of water impact. Greco et al. [15]
theoretically studied the bottom slamming of a very large floating
structure. Qin and Batra [16] developed a hydroelastic model for
investigating the fluid–structure interaction during slamming of
sandwich composite hulls.

Here we investigate the transient hydroelastic response of a
sandwich beamwhich corresponds to one half of a symmetric boat
hull subjected to a slamming pressure. A coupled hydroelastic
finite element model has been developed using higher order shear
and normal deformation theories for each layer of the beam and
the velocity potential theory for the fluid. Failure analysis is also
carried out to ascertain the initiation, location and cause of the
failure of the boat hull due to water impact.
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Fig. 1. Schematic diagram of a boat hull entering into water with constant vertical
velocity: (a) vertical cross-section of the coupled hull and water; (b) coordinate
systems and geometrical features of one half of the hull coupled with water for
finite element model.
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2. Problem description and basic equations

Fig. 1 illustrates a two-dimensional cross-section of the boat
hull entering into the water with a constant vertical velocity. As
shown in this figure, the hull is a sandwich structure having
symmetry about the vertical plane. Two Cartesian coordinate
systems are used to model the coupled system. The origin of the
coordinate system (x1; z1) for modeling the fluid is located on the
surface of the undisturbed fluid such that lines x1 ¼ 0 and x1 ¼ a
represent vertical boundaries of the fluid domain while lines
z1 ¼ 0 and z1 ¼ −hw represent the top undisturbed surface and
the bottom surface of the fluid, respectively. The origin of the
coordinate system (x; z) for modeling the beam is at the mid-plane
of the beam such that lines x¼ 0; L represent ends of the beam.
The angle β as shown in Fig. 1(b) is called the dead rise angle of the
boat hull. The depth of the water, the free water surface and the
interface between the bottom wetted surface of the beam and the
water are denoted, respectively, by hw, Sf and Si. The top and the
bottom face sheets of the sandwich beam are composed of a
unidirectional fiber-reinforced composite while the core of the
beam is made of a foam being modeled as an isotropic homo-
geneous material. The thickness of the top face sheet, the core and
the bottom face sheet equal, respectively, h, 2hc and h.

High-order shear and normal deformation theory (HSNDT)
proposed by Lo et al. [17] is augmented for each face and the core
of the beam to model kinematics of deformations of the beam
while maintaining the continuity of displacements across the two
interfaces between the core and the face sheets. Thus, the x-
displacements ut , uc and ubof a point in the top face sheet, the core
and the bottom face sheet, respectively, are given by

ut ¼ u0 þ hclx þ h2cmx þ h3c nx þ ðz−hcÞθx þ ðz2−h2c Þαx þ ðz3−h3c Þβx ð1Þ

uc ¼ u0 þ zlx þ z2mx þ z3nx ð2Þ
ub ¼ u0−hclx þ h2cmx−h
3
c nx þ ðz þ hcÞϕx þ ðz2−h2c Þγx þ ðz3 þ h3c Þλx ð3Þ

Here u0 represents the generalized x-displacement of a point
on the reference plane (z¼ 0), lx is the first order rotation of the
normal to the mid-plane with respect to the x-axis, and variables
mx,nx,θx, αx, βx, ϕx, γx and λx represent the higher order rotations of
the normal. Superscripts and subscripts t, c, and b designate the
top face sheet, the core and the bottom face sheet, respectively.
Substitution of z¼ hc in Eq. (1) and z¼ −hc in Eq. (3) yields
ut ¼ uc ¼ ub ensuring the continuity of x-displacements at two
interfaces. The transverse or the z-displacements wt , wc and wb of
a point in the top face sheet, the core and the bottom face sheet,
respectively, are assumed to be given by

wt ¼w0 þ hclz þ h2cmz þ ðz−hcÞαz þ ðz2−h2c Þβz ð4Þ

wc ¼w0 þ zlz þ z2mz ð5Þ

wb ¼w0−hclz þ h2
cmz þ ðzþ hcÞγz þ ðz2−h2c Þλz ð6Þ

in which w0 is the z-displacement of a point on the mid-surface of
the beam.

For brevity, we group the generalized displacements into the
following two vectors:

dt
� �¼ ½u0 w0 �T and

dr
� �¼ ½ lx mx nx θx αx βx ϕx γx λx lz mz γz λz αz βz �T

ð7Þ
In order to implement the selective integration rule for com-

puting the element stiffness matrices corresponding to the trans-
verse shear deformations, the strain at a point in the beam is
grouped into the following two strain vectors εin

� �
and εis:

εin

n o
¼ ½ εix εiz �T and εis ¼ εixz; i¼ t; c; b ð8Þ

in which εx and εz are normal strains along the x- and the
z-directions, respectively, and εxz is the transverse shear strain.
Using displacement fields (1)–(6) and the linear strain–displace-
ment relations, strain vectors εtn

� �
, εbn
� �

, εcn
� �

, εts, ε
b
s and εcs can be

expressed as

εtn
� �¼ εbt

� �þ ½Z� εtbr
� �

; εbn

n o
¼ εbt
� �þ ½Z� εbbr

n o
and εcn

� �¼ εbt
� �þ ½Z� εcbr

� �
ð9Þ

εts ¼ εst þ ½Z� εtsr
� �

; εbs ¼ εst þ ½Z� εbsr

n o
and εcs ¼ εst þ ½Z� εcsr

� �
ð10Þ

Matrices appearing in Eqs. (9) and (10) are defined in Appendix
A while the generalized strain vectors are given by

εbt ¼ ∂u0
∂x 0

h iT
εtbr

� �¼ ∂lx
∂x

∂mx
∂x

∂nx
∂x

∂θx
∂x

∂αx
∂x

∂βx
∂x αz βz

h iT
;

εbbr

n o
¼ ∂lx

∂x
∂mx
∂x

∂nx
∂x

∂ϕx
∂x

∂γx
∂x

∂λx
∂x γz λz

h iT
εcbr

� �¼ ∂lx
∂x

∂mx
∂x

∂nx
∂x lz mz

h iT
; εst ¼ ∂w0

∂x
;

εtsr
� �¼ θx αx βx

∂lz
∂x

∂mz
∂x

∂αz
∂x

∂βz
∂x

h iT
;

εcsr
� �¼ lx mx nx

∂lz
∂x

∂mz
∂x

h iT
;

εbsr

n o
¼ ϕx γx λx

∂lz
∂x

∂mz
∂x

∂γz
∂x

∂λz
∂x

h iT
ð11Þ

Similar to strain vectors given by Eq. (8), stresses at a point in
the beam are described by the following two stress vectors:

sin
n o

¼ ½ six siz �T and sis ¼ sixz; i¼ t; c; b ð12Þ

where sx and sz are the normal stresses on the x- and the z-
planes, respectively, and sxz is the transverse shear stress. Assum-
ing the material of the face sheets and the core to be linear elastic,
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their constitutive relations are

sin
n o

¼ ½Ci
n� εtn
� �

and sis ¼ Ci
55ε

i
xz; i¼ t; c; b ð13Þ

in which the elastic coefficient matrix ½Ci
n� is given by

½Ci
n� ¼

Ci
11 Ci

13

Ci
13 Ci

33

" #

ð14Þ
Hamilton's principleZ t2

t1
ðδTp−δTkÞdt ¼ 0 ð15Þ

is employed to derive equations governing deformations of motion
of the beam. In Eq. (15) Tp and Tk are the total potential and the
total kinetic energies of the beam, respectively, δ is the variational
operator, and t1 and t2 are the starting and the ending times. The
first variations of the total potential and the total kinetic energies
of the beam can be expressed as

δTp ¼ b
Z L

0

Z h2

h1
ðδ εtn
� �T

stn
� �þ δεtss

t
sÞdz þ

Z h3

h2
ðδ εbn

n oT
sbn

n o
þ δεbss

b
s Þd

"

þ
Z h4

h3
ðδ εcn
� �T scn

� �þ δεcss
c
sÞdz−pδwb

#
dx ð16Þ

δTk ¼ bðρthþ 2ρchc þ ρbhÞ
Z L

0
δ _dt
n oT _dt

n o
dx ð17Þ

in which ρi denotes the mass per unit length of the i-th layer of the
beam while p is the externally applied pressure acting normal to
the bottom surface of the beam. Note that in Eq. (16),
h1 ¼ −ðhþ hcÞ, h2 ¼ −hc , h3 ¼ hc and h4 ¼ hþ hc . Here, we have
neglected effects of rotary inertia which is a reasonable approx-
imation for (hþ hcÞ5L. Also, a dot over a variable represents the
differentiation of the variable with respect to time.
3. The finite element model of the beam

The beam is discretized by three noded quadratic isoparametric
beam elements of length Le. Following Eq. (7), the generalized
displacement vectors, associated with the i-th (i¼1, 2, 3) node of
an element can be written as

dti
� �¼ ½u0i w0i �T and

dri
� �¼ ½ lxi mxi nxi θxi αxi βxi ϕxi γxi λxi lzi mzi γzi λzi αzi βzi �T :

ð18Þ
The generalized displacement vector at a point within the

element can be expressed in terms of the generalized nodal
displacement vectors det

� �
and der

� �
by

dt
� �¼ ½Nt � det

� �
and dr

� �¼ ½Nr � der
� � ð19Þ

in which

½Nt � ¼ ½Nt1 Nt2 Nt3 �T ; ½Nr � ¼ ½Nr1 Nr2 Nr3 �T ;
Nti ¼ niIt ; Nri ¼ niIr ;

det
� �¼ dt1

� �T dt2
� �T det3

� �T
h iT

;

der
� �¼ dr1

� �T dr2
� �T der3

� �T
h iT

: ð20Þ

It and Ir are ð2� 2Þ and ð15� 15Þ identity matrices, respec-
tively, and ni is the shape function of the i-th node written in
natural coordinates. Using relations (9)–(11) and (19), the strains at
a point are given by

εtn
� �¼ ½Btb� det

� �þ ½Z2�½Bt
rb� der

� �
; εbn

n o
¼ ½Btb� det

� �þ ½Z3�½Bb
rb� der

� �
;

εcn
� �¼ ½Btb� det

� �þ ½Z4�½Bc
rb� der

� �
; εts ¼ ½Bts� det

� �þ ½Z5�½Bt
rs� der
� �

;

εbs ¼ ½Bts� det
� �þ ½Z6�½Bb

rs� der
� �

and εcs ¼ ½Bts� det
� �þ ½Z7�½Bc

rs� der
� �

ð21Þ
in which the strain–displacement matrices ½Btb�, ½Brb�, ½Bts� and ½Brs�
are given by

½Btb� ¼ ½Btb1 Btb2 Btb3 �; ½Bi
rb� ¼ ½Bi

rb1 Bi
rb2 Bi

rb3 �;

½Bts� ¼ ½Bts1 Bts2 Bts3 �; ½Bi
rs� ¼ ½Bi

rs1 Bi
rs2 Bi

rs3 � ð22Þ

The submatrices Btbj, Bi
rbj, Btsj and Bi

rsj (i¼ t; c; b; j¼ 1;2;3)
appearing in Eq. (22) are given in Appendix A. On substitution
from Eqs. (13) and (21) into Eqs. (16) and (17) and subsequently,
using Eq. (15) we obtain the following equations of motion at the
element level:

½Me� €d
e
t

n o
þ ½Ke

tt � det
� �þ ½Ke

tr � der
� �¼ Fet

� � ð23Þ

½Ke
tr �T det

� �þ ½Ke
rr � der
� �¼ Fer

� � ð24Þ

The element mass matrix ½Me�, the element stiffness matrices
½Ke

tt �, ½Ke
tr�, ½Ke

rr�, and the element load vector Fe
� �

are given by

½Me� ¼ ðρthþ 2ρchc þ ρbhÞ
Z Le

0
½Nt �T ½Nt �dx; ½Ke

tt � ¼ ½Ke
tb� þ ½Ke

ts�;

½Ke
tr � ¼ ½Ke

trb� þ ½Ke
trs�; ½Ke

rr � ¼ ½Ke
rrb� þ ½Ke

rrs�;

Fet
� �¼

Z Le

0
pðxÞ½Nt �T ½0 1 �Tdx

and Fer
� �¼

Z Le

0
pðxÞ½Nr�T ½Z�Tdx ð25Þ

Explicit expressions for the matrices in Eq. (25) are given in
Appendix A. It should be noted that the stiffness matrices
associated with the transverse shear strains are derived separately
from the stiffness matrices for the normal strains. Thus the former
can be evaluated by using a lower-order integration rule than that
employed to evaluate the latter to avoid the shear locking problem
for thin beams. The element equations of motion are assembled to
obtain the following global equations of motion:

½M� €X
n o

þ ½Ktt � Xf g þ ½Ktr � Xrf g ¼ Ftf g ð26Þ

and

½Krt � Xf g þ ½Krr � Xrf g ¼ Frf g ð27Þ
where ½M� is the global mass matrix, ½Ktt �, ½Ktr� and ½Krr � are the
global stiffness matrices while Ftf g and Frf gare the global nodal
force vectors. The transverse stresses computed by the constitutive
equations may not be accurate and continuous at the interface
between two layers because of dissimilar material properties.
Batra and Xiao [26,27] have used a layer-wise third-order shear
and normal deformable theory (TSNDT) and shown that transverse
shear and normal stresses computed from the 3-D constitutive
relations are accurate. Here, the transverse stresses across the
thickness of the beam are computed by integrating the governing
equations of motions with respect to z as follows:

sixz ¼ −
Z

∂six
∂x

−ρi €ui
� �

dzþ Ci
xzðxÞ;

siz ¼ −
Z

∂sixz
∂x

−ρi €ui
� �

dzþ Ci
zðxÞ; i¼ t; c; b ð28Þ

where Ci
xz and Ci

z are to be evaluated by satisfying boundary
conditions that sxz vanishes at points on the top and the bottom
surfaces of the beam, sz vanishes at points on the top surface of
the beam and continuities of transverse stresses at the interfaces.
Thus the transverse stresses at a point in the bottom face sheet,
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the core and the top face sheet are given by

sbxz ¼− Cb
11 Cb

13

h i
ðz½B1� det

� �þ ½Z8�½B2� der
� �Þ þ zρc €u0 þ C1

xz;

scxz ¼− Cc
11 Cc

13

h i
ðz½B1� det

� �þ ½Z10�½B3� der
� �Þ þ zρc €u0 þ C2

xz;

stxz ¼− Ct
11 Ct

13

h i
ðz½B1� det

� �þ ½Z15�½B4� der
� �Þ þ zρt €u0 þ C3

xz;

stz ¼ Ct
11 Ct

13

h i
½Z16�½B6� der

� �
−
1
2
z2ρt 1 0

� �
�½Btb� €d

e
t

n o
−z

∂C3
xz

∂x
þ ρtz 1 0

� �½Nt � €d
e
t

n o
þ C1

z ;

scz ¼ Cc
11 Cc

13

h i
½Z18�½B7� der

� �
−
1
2
z2ρc 1 0

� �
�½Btb� €d

e
t

n o
−z

∂C2
xz

∂x
þ ρcz 1 0

� �½Nt � €d
e
t

n o
þ C2

z ;

sbz ¼ Cb
11 Cb

13

h i
½Z21�½B8� der

� �
−
1
2
z2ρb 1 0

� �
�½Btb� €d

e
t

n o
−z

∂C1
xz

∂x
þ ρbz 1 0

� �½Nt � €d
e
t

n o
þ C3

z ; ð29Þ

where

C1
xz ¼ Cb

11 Cb
13

h i
ðh1½B1� det

� �þ ½Z9�½B2� der
� �Þ−h1ρb €u0;

C2
xz ¼ Cc

11 Cc
13

h i
ðh2½B1� det

� �þ ½Z12�½B3� der
� �Þ− Cb

11 Cb
13

h i
�ðh2½B1� det

� �þ ½Z11�½B2� der
� �Þ þ h2ðρb−ρcÞ €u0 þ C1

xz

C3
xz ¼ Ct

11 Ct
13

h i
ðh3½B1� det

� �þ ½Z15�½B4� der
� �Þ− Cc

11 Cc
13

h i
�ðh3½B1� det

� �þ ½Z14�½B3� der
� �Þ þ h3ðρc−ρtÞ €u0 þ C2

xz

C1
z ¼ − Ct

11 Ct
13

h i
½Z17�½B6� der

� �þ 1
2
h24ρ

t

�½ 1 0�½Btb� €d
e
t

n o
þ h4

∂C3
xz

∂x
−ρth4½1 0�½Nt � €d

e
t

n o

C2
z ¼ − Cc

11 Cc
13

h i
½Z19�½B7� der

� �þ 1
2
h2cρ

c

�½ 1 0�½Btb� €d
e
t

n o
þ hc

∂C2
xz

∂x
−ρchc½1 0�½Nt � €d

e
t

n o
þ Ct

11 Ct
13

h i

�½Z20�½B6� der
� �

−
1
2
h2cρ

t ½1 0�½Btb� €d
e
t

n o
−hc

∂C3
xz

∂x
þ ρthc

�½ 1 0�½Nt � €d
e
t

n o
þ C1

z ;

C3
z ¼ − Cb

11 Cb
13

h i
� ½Z22�½B6� der

� �þ 1
2
h2c ρ

b½1 0�½Btb� €d
e
t

n o

−hc
∂C2

xz

∂x
þ ρbhc � ½1 0�½Nt � €d

e
t

n o
þ Cc

11 Cc
13

h i

�½Z23�½B7� der
� �

−
1
2
h2cρ

c½1 0�½Btb� €d
e
t

n o
þ hc

∂C2
xz

∂x
−ρchc

�½ 1 0�½Nt � €d
e
t

n o
þ C2

z

½B1� ¼ B11 B12 B13
� �

;

½B2� ¼ B21 B22 B23
� �

;

½B3� ¼ B31 B32 B33
� �

;

½B4� ¼ B41 B42 B43
� �

;

½B6� ¼ B61 B62 B63
� �

;

½B7� ¼ B71 B72 B73
� �

;

½B8� ¼ B81 B82 B83
� �

ð30Þ
Expressions for the submatrices B1i, B2i, B3i, B4i, B6i, B7i and B8i

(i¼1, 2 and 3) and [Zα] (α=2, 3,…23) are given in Appendix A.
4. Finite element model of the fluid domain

Assuming that the fluid is incompressible and inviscid, and its
deformations are irrotational the two-dimensional governing
equation of the fluid is given by [4]

½∇�T ½∇ϕðx1; z1Þ� ¼ 0 ð31Þ
where ϕ is the velocity potential at any point in the fluid domain
and ½∇� ¼ ½ ∂=∂x1 ∂=∂z1 �T . At the top free surface, the linearized
dynamic free surface condition is given by [4]

∂2ϕ
∂t2

þ g
∂ϕ
∂z1

¼ 0 ð32Þ

The boundary conditions associated with the governing Eq. (31)
are [4,11]:

∂ϕ
∂x1

¼ 0 at x1 ¼ 0 and a;
∂ϕ
∂z1

¼ 0 at z1 ¼−hw and
∂ϕ
∂z

¼ � V cos β þ _w on Si

ð33Þ
The elevation of free surface ηðx1;0Þ in terms of the velocity

potential is given by [18]

ηðx1;0Þ ¼−
1
g
∂ϕ
∂t

ðx1;0Þ ð34Þ

where g is the gravitational constant.
The functional which yields the above governing equation and

boundary conditions can be written as

Πf ¼
1
2

Z t2

t1

Z
Ω
½∇ϕ�T ½∇ϕ�dΩ−

1
g

Z
SF

∂ϕ
∂t

� �2

dSF−2
Z
Si
ϕðV cos β þ _wÞdSi

" #
dt

ð35Þ
The fluid domain is discretized by two-dimensional four noded

isoparametric elements. The velocity potential at any point within
a typical finite element of the fluid domain can be expressed as

ϕ¼ ½Nϕ� ϕe� � ð36Þ
where ½Nϕ� is the shape function matrix and ϕe� �

is the nodal
potential degrees of freedom of the element. Substitution of Eq.
(36) into Eq. (35) yields the functional for the fluid finite element
as follows:

Πe
f ¼

1
2
b
Z t2

t1

Z ae

0

Z hew

0
ϕe� �T ð½∇�½Nϕ�ÞT ð½∇�½Nϕ� ϕe� �"

dx1dz1−
1
g

Z ae

0

_ϕ
e

n oT
½Nϕ�T ½Nϕ�

���
z1 ¼ 0

_ϕ
e

n o
dx1

−2
Z ae

0
ϕe� �T ½Nϕ�T ð�V cos β þ ½0 1�½Nt � _d

e
t

n o
þ ½Z�½Nr� _d

e
r

n o
Þdx1

#
dt

ð37Þ
where ae, b and hew are the length, the width and the height of the
fluid element, respectively. Extremization of Πe

f (i.e. δΠ
e
f ¼ 0) leads

to the derivation of the following governing finite element
equations of the fluid domain:

½Me
f � €ϕ

e
n o

þ ½Ke
f � ϕ
� �

−½Re
f st � _d

e
t

n o
−½Re

f sr � _d
e
r

n o
¼ Feϕ
n o

ð38Þ

where

½Me
f � ¼

1
g

Z ae

0
½Nϕ�T ½Nϕ�

���
z1 ¼ 0

dx1;

½Ke
f � ¼

Z ae

0

Z hew

0
ð½∇�½Nϕ�ÞT ð½∇�½Nϕ�Þdx1 dz1;

Re
f st

n o
¼

Z ae

0
½Nϕ�T ½0 1� ½Nt �dx; Re

f sr

n o
¼

Z ae

0
½Nϕ�T ½Z�½Nr�dx;

and Feϕ
n o

¼
Z ae

0
½Nϕ�TV cos β

���
z ¼ h1

dx1 ð39Þ

The elemental governing finite element equations given by (38)
are now assembled over the entire fluid space to derive the
following global set of equations governing the fluid deformations:

½Mf � €Φ
� �þ ½Kf � Φf g−½Rf st � _X

n o
−½Rf sr � _Xr

n o
¼ Fϕ
� � ð40Þ
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where ½Mf � and ½Kf � are the global mass and the global stiffness
matrices of the fluid, ½Rf st � and ½Rf sr � are the global fluid–structure
coupling matrices, Fϕ

� �
is the global nodal fluid loading vector and

Φf g is the global nodal velocity potential vector.
5. Coupled fluid–structure model

The linearized expression for the hydrodynamic pressure acting at
the wetted bottom surface of the sandwich beam is given by [16]

p¼−ρf
∂ϕ
∂t

ð41Þ

where ρf is the density of the fluid. Using (41) in the expression for
elemental load vectors of the beam given by (25), the elemental
slamming load at the bottom surface of the sandwich beam can be
expressed as

Fet
� �¼ −ρf ½Re

f st �T _ϕ
e

n o
and Fer

� �¼−ρf ½Re
f sr �T _ϕ

e
n o

ð42Þ

where [Refst] and [Refsr] are defined in Appendix A.
Substituting Eq. (42) into Eqs. (23) and (24) and then combin-

ing the resulting global equations with Eq. (40), the global coupled
fluid–structure equations can be obtained as

½M� ½Otr� ½Otϕ�
½Otr �T ½Orr� ½Orϕ�
½Otϕ�T ½Orϕ�T ½Mf �

2
664

3
775

€X
n o
€Xr

n o
€Φ

� �

8>>>><
>>>>:

9>>>>=
>>>>;

þ
½Ott � ½Otr� ρf ½Rf st �T

½Otr �T ½Orr � ρf ½Rf sr �T
−½Rf st � −½Rf sr � ½Oϕϕ�

2
664

3
775

�

_X
n o
_Xr

n o
_Φ

� �

8>>>><
>>>>:

9>>>>=
>>>>;

þ
½Ktt � ½Ktr� ½Otϕ�
½Ktr�T ½Krr� ½Orϕ�
½Otϕ�T ½Orϕ�T ½Kf �

2
664

3
775

Xf g
Xrf g
Φf g

8><
>:

9>=
>;¼

Of g
Orf g
Fϕ

� �
8><
>:

9>=
>;

ð43Þ
in which ½Ott �, ½Otr �, ½Otϕ�, ½Orr �, ½Orϕ� and ½Oϕϕ� are null matrices of
appropriate sizes while Of g and Orf g are appropriate null column
vectors.
6. Failure criteria

The stress-based Hashin's criteria [19] are used to determine
whether or not a material point of the beam has failed and the
corresponding failure mode. According to these criteria, a material
point is considered to have failed if the following conditions are
satisfied:

Fiber failure six=X
i
t≥1 or jsixj=Xi

c≥1; i¼ t and b

Matrix tensile or shear failure : ðsiz=Yi
tÞ2 þ ðsixz=SiÞ2≥1; i¼ t and b

Matrix compressive failure : ðYi
c=2S

iÞ2−1
n o

jsizj=Yi
c þ ðsiz=2SiÞ2

þðsixz=SiÞ2≥1; i¼ t and b

Delamination failure : ðsiz=Zi
tÞ2 þ ðsixz=S

iÞ2≥1; i¼ t and b

Core compression : jsczj=Zc
c≥1 ð44Þ

where Xi
t , Y

i
t (X

i
c , Y

i
c) are the tensile (the compressive) strengths in

the x-, and the z-directions, respectively, and Si is the transverse
shear strength of the materials of the different layers of the beam
as denoted by the superscript ‘i'. Zit and S̄I are the interfacial
strengths and Zcc is the strength of the core in compression.

7. Results and discussions

We compute results for a sandwich beamwith the 15 mm thick
top and the 15 mm thick bottom face sheets composed of a layer of
unidirectional transversely isotropic T300/5208 graphite/epoxy
composite [20] while the 20 mm thick core of the beam is made
of polyurethane foam which is treated as an isotropic material
[21]. The fibers in the face sheets are aligned along the x-axis, and
values of material parameters are listed in Table 1. The length of
the beam is considered as 1 m. The number of three noded
isoparametric bar elements used for discretizing the beam is taken
as 30. We verify the accuracy of the present finite element model
of the beam by computing natural frequencies of a cantilever
sandwich beam studied by Banerjee and Sobey [22]; the two sets
of results listed in Table 2 are in excellent agreement with each
other. We have also analyzed deformations of the simply sup-
ported composite beam ð01=901=01Þ, studied by Pagano [23] and
compared in Fig. 2 the through the thickness variations of the
transverse shear stress. It is clear that the present approach gives
very accurate values of the transverse shear stress. To verify the
accuracy of the finite element formulation of the fluid domain, the
first few slosh frequencies of a 2-D fluid continuum (a¼ 2 m,
hw ¼ 1 m) contained in a rigid rectangular tank have been com-
puted and compared with exact solutions available in Ref. [18].
Table 3 illustrates that such two sets of frequencies are in excellent
agreement with each other. The Newmark implicit unconditionally
stable integration method is employed to compute the hydrody-
namic and coupled hydroelastic responses in the time domain. The
fluid domain is discretized by 60 four noded two-dimensional
isoparametic elements along its length while 40 such elements are
used along its depth. Numerical responses are computed by
considering the length and the depth of water as 10 m and 6 m,
respectively. For further verification of the accuracy of the present
finite element model of the fluid domain, the hydrodynamic
pressures at the wetted surfaces of rigid V-shaped hull entering
into water with constant vertical velocity have been computed.
Figs. 3 and 4 illustrate the comparison of such slamming pressures
with those obtained by Zhao and Faltinsen [24] when values of the
dead rise angle β are 101 and 201, respectively. It may be observed
that the present model also fairly accurately computes the slam-
ming pressure. The normal and tangential velocities at the inter-
face between the water and the rigid hull have been computed
and illustrated in Fig. 5. It may be observed from this figure that
the normal velocity of the rigid hull is equal to that of the water at
the interface between the water and the rigid hull ensuring further
that the present finite element model accurately estimates the
responses.

For computing hydroelastic responses, the end x¼ L of the
beam is considered to be clamped while at the other end (x¼ 0)
the following boundary conditions are imposed:

u0 ¼ lx ¼mx ¼ nx ¼ θx ¼ αx ¼ βx ¼ ϕx ¼ γx ¼ λx ¼ 0 ð45Þ
Unless otherwise mentioned, it is assumed that the beam

enters into the water with constant downward vertical velocity
until the wetted length of the beam equals one half of its length
after which the beam is assumed to have zero rigid body velocity
and undergo transient vibrations. First the effect of flexible beam
impacting the water is studied and illustrated in Fig. 6. It may be
observed that the slamming pressure at the interface between the
water and flexible hull is reduced as compared to that with rigid
hull. This may be attributed to the deformation of the hull. Fig. 7
illustrates variation of the transverse displacement at the end (0,
0) of the beam with time for different values of dead rise angles of
the beam while the value of the vertically downward water-entry
velocity of the beam is 1.5 m/s. It may be observed from this figure
that the beam is set into transient vibrations after an initial time
during which the beam is wetted. The amplitude of vibration
decreases with the increase in the value of the dead rise angle. As
expected, Fig. 8 illustrates that for a particular value of the dead
rise angle, the amplitude of transverse vibrations of the beam due



Table 1
Material properties of face sheets and the core of the beam.

Materials C11 (GPa) C13 (GPa) C33 (GPa) C55 (GPa) Xt (MPa) Yt ¼ Yc

¼ Zt ¼ Zc

(MPa)

Xc (MPa) S (MPa) ρ (kg/m3)

T300/5208 [20] 134.68 4.73 14.38 5.7 1515 43.8 1697 86.9 1620
Core [21] 3.61 1.94 3.61 .0672 8.48 8.48 8.48 4.59 320

Table 2
Comparison of natural frequencies (Hz) of a sandwich beam with the existing
results.

Source 1st mode (Hz) 2nd mode (Hz) 3rd mode (Hz)

Present solution 33.62 198.6 510.2
Ref. [23] 33.74 198.8 511.4

Fig. 2. Comparison of the transverse normal stress across the thickness of a three-
layered ð01=901=01Þ simply supported beam of L=H¼ 4 with the exact solution of
Pagano [23]; H equals the beam thickness and the amplitude of the distributed
sinusoidal load equals q0.

Table 3
Comparison of sloshing frequencies (Hz) of two-dimensional fluid contained in a
rigid tank (a¼ 3 m, hw ¼ 1 m)

Source 1st mode (rad/s) 2nd mode (rad/s) 3rd mode (Hz)

Present solution 3.7546 5.5210 6.7863
Ref. [18] 3.7594 5.5411 6.7986

Fig. 3. Distribution of slamming pressure over the wetted surface of a rigid hull
with β¼ 101.
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ρ V

2 )

Ref. [24]
Present Solution

Fig. 4. Distribution of slamming pressure over the wetted surface of a rigid hull
with β¼ 201.
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to coupled hydroelasticity increases with the increase in the value
of the water-entry velocity of the beam (V). For a particular value
of water-entry velocity (V¼1.5 m/s), the variation with time of the
distribution of axial normal stress (sbx) at the bottom surface of the
bottom face sheet of the beam has been illustrated in Figs. 9–11
when values of β are 101, 151 and 201, respectively. It may be
observed from these figures that since the transverse motion of
the end of the beam (x¼ L) is restrained, the magnitude of the
axial normal stress is maximum at this fixed end. Also, the
magnitude of normal stress decreases with the increase in the
value of the dead rise angle. Although not presented here, similar
variation with time of the distribution of axial stress (stx) at the top
surface of the top face sheet of the beam has been obtained.
Figs. 12–14 demonstrate the distributions of transverse shear
stress across the thickness of the beam at the fixed end of the
beam for different values of β while the beam enters into water
with V¼1.5 m/s. It can be observed from these figures that the
transverse shear stress is continuous along the thickness of the
beam and maximum at the middle of both the top and the bottom
faces of the beam. The transverse shear stress also decreases with
the increase in the dead rise angle. For investigating the initiation
of the failure due to slamming pressure, the failure index
corresponding to each failure mechanism as described by Eq.
(44) has been computed by varying the value of the water-entry
velocity (V) of the beam. It has been found that the initiation of the



Fig. 6. Comparison of distribution of slamming pressure over the wetted surface of
rigid and deformable hulls with β¼ 101.

Fig. 7. Transverse deflection at the end (0, 0) of the beam for different dead rise
angles of the beam (V¼1.5 m/s).

Fig. 5. Normal and tangential velocities at the interface between the water and the
rigid hull.
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failure in the beam occurs first due to the core compression at that
portion of the interface between the core and the bottom face
which is located at the clamped end of the beam as shown in
Fig. 15 for β¼ 100. For causing this failure the beam enters into
water with V¼1.88 m/s and the time to cause this failure after the
beam starts entering into water is 56.5 ms. It may also be observed
from Fig. 15 that except at very small portion of the clamped end of
the beam where damage occurs first, the failure index is negligibly
small elsewhere due to core compression. For this water-entry
velocity which causes core compression failure, the failure indices
corresponding to other failure modes are also very small as shown
in Figs. 16 and 17 based on the delamination mode of failure and
the fiber failure in the bottom face sheet, respectively. Since,
Yt ¼ Zt for the materials being considered here, the matrix tensile
or shear failure criterion yields same value of the failure index.
Also, although not shown here, the value of the failure index based
on the matrix compressive failure criterion is also very small.
Hence, in order to investigate the further load carrying capability
of the beam (i.e., the ultimate failure of the beam), the stiffness
coefficient of the 10% length of the core starting from the clamped
end is degraded and the failure indices corresponding to different
failure modes are further computed with gradually increased value
of water-entry velocity of the boat. Fig. 18 illustrates such failure
Fig. 8. Transverse deflections at the end (0, 0) of the beam with β¼ 101 for
different values of water entry velocity.

Fig. 9. Variation with time of the axial stress at the bottom surface of the bottom
face sheet of the beam (β¼ 101, V ¼ 1:5 m=s).



Fig. 12. Variation with time of the transverse shear stress across the thickness of
the beam at its clamped end (β¼ 101, V ¼ 1:5 m=s).

Fig. 13. Variation with time of the transverse shear stress across the thickness of
the beam at its clamped end (β¼ 151, V ¼ 1:5m=s).

Fig. 14. Variation with time of the transverse shear stress across the thickness of
the beam at its clamped end (β¼ 201, V¼1.5 m/s).

Fig. 15. Variation with time of the failure index due to core compression (β¼ 101,
V¼1.88 m/s).

Fig. 10. Variation with time of the axial stress at the bottom surface of the bottom
face sheet of the beam (β¼ 151, V ¼ 1:5 m=s).

Fig. 11. Variation with time of the axial stress at the bottom surface of the bottom
face sheet of the beam (β¼ 201, V ¼ 1:5m=s).
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indices and it may be observed from this figure that the further
initiation of the failure of the beam occurs again due to the core
compression when the water-entry velocity of the beam is as high
as 23.8 m/s. Note that this failure occurs at the end of the beam
other than the clamped end. Also, for V¼23.8 m/s the beam is safe
as far as the delamination failure is concerned as shown in Fig. 18.
Thus the ultimate failure of the boat hull with sandwich construc-
tion is also due to core compression failure. Das and Batra [28]
used the commercial software LSDYNA to analyze finite
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deformations of a sandwich structure due to water slamming
loads and found that the deformations of the core due to
transverse shear strains dominate over those due to transverse
normal strains. Similar results were obtained by and Qin and Batra
[16] who used, respectively, the TSNDT and the {3,2} plate theory.
Values of material and geometric parameters used in this paper
are different from those employed in [16].
Fig. 18. Variation with time of the failure indices at the interface between the
bottom face sheet and the core of the beam after 10% degradation of the core from
the clamped end (x¼ L) of the beam (β¼ 101).
8. Conclusions

Transient hydroelastic analysis of a sandwich beam which
represents a boat hull has been performed. The beam enters into
water with constant vertically downward velocity until its half of
the length is wetted. Thus the beam is subjected to slamming load
and undergoes transient vibrations. One end of the beam is fixed
while the axial motion of the other end of the beam is restrained
for approximate simulation of the boat hull. A coupled hydro-
elastic finite element model is developed using layer-wise higher
order shear and normal deformation theories for the face sheets
and the core of the beam and the velocity potential theory for the
fluid. Hydroelastic responses of the beam indicate that for a
constant water-entry velocity, the amplitude of vibrations of the
beam impacted by water increases with the decrease in the value
of the dead rise angle while for a constant dead rise angle the
amplitude of vibrations increases with the increase in the water-
Fig. 16. Variation with time of the delamination failure index at the interface
between the bottom face sheet and the core of the beam based on delamination
failure criterion (β¼ 101, V¼−1.88 m/s).

Fig. 17. Variation with time of the fiber failure index at the interface between the
bottom face sheet and the core of the beam based on fiber failure criterion (β¼ 101,
V¼1.88 m/s).
entry velocity. For a constant water-entry velocity, both axial
normal stress and transverse shear stress in the beam increase
with the decrease in the value of the dead rise angle. If the boat
hull with sandwich construction is subjected to slamming load at
the bottom surface of the bottom face sheet of the boat, the first
failure occurs due to core compression at the interface between
the core and the bottom face sheet and the damaged interface is
located at the clamped end. The ultimate failure of the boat is also
due to core compression at the interface between the core and the
bottom face sheet of the boat while the location of the failure is at
the end of the boat other than its clamped end.
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Appendix A

Various matrices appearing in expressions for strains given by
Eqs. (9) and (10) and in the expression of Fer

� �
given by Eq. (25) are

as follows:

½Z2� ¼ hc hc
2 hc

3 z−hc z2−hc
2 z3−hc

3 0 0
0 0 0 0 0 0 1 2z

" #
;

½Z3� ¼ −hc hc
2 −hc

3 z þ hc z2−hc
2 z3 þ hc

3 0 0
0 0 0 0 0 0 1 2z

" #
;

½Z4� ¼
z z2 z3 0 0
0 0 0 1 2z

" #
;

½Z5� ¼ 1 2z 3z2 hc hc
2 z−hc z2−hc

2
h i

;

½Z6� ¼ 1 2z 3z2 −hc hc
2 z þ hc z2−hc

2
h i

;

½Z7� ¼ 1 2z 3z2 z z2
� �

;

½Z8� ¼ −hcz hc
2z −hc

3z z2=2þ hc
2z z3=3−hc

2z z4=4þ hc
3z 0 0

0 0 0 0 0 0 z z2

" #
;
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½Z10� ¼
z2=2 z3=3 z4=4 0 0
0 0 0 z z2

" #
;

½Z13� ¼ hcz hc
2z hc

3z z2=2−hcz z3=3−hc
2z z4=4−hc

3z 0 0
0 0 0 0 0 0 z z2

" #
;

½Z9� ¼ ½Z8�
���
z ¼ h1

; ½Z11� ¼ ½Z8�
���
z ¼ h2

; ½Z12� ¼ ½Z10�
���
z ¼ h2

;

½Z14� ¼ ½Z10�
���
z ¼ h3

; ½Z15� ¼ ½Z13�
���
z ¼ h3

;

½Z18� ¼
z3
6

z4
12

z5
20 0 0

0 0 0 z2
2

z3
3

2
4

3
5

½Z16� ¼
hcz2
2

h2c z
2

2
h3c z

2

2
z3
6 −

hcz2
2

z4
12−

h2c z
2

2
z5
20−

h3c z
2

2 0 0

0 0 0 0 0 0 0:5z2 z3
3

2
4

3
5

½Z17� ¼
hc
2

h2c
2

h3c
2

h4
6 − hc

2
h24
12−

h2c
2

h34
20−

h3c
2 0 0

0 0 0 0 0 0 0:5 h4
3

2
4

3
5

½Z19� ¼
h3c
6

h4c
12

h5c
20 0 0

0 0 0 h2c
2 − h3c

3

2
4

3
5

½Z20� ¼
h3c
2

h4c
2

h5c
2 − h3c

3 − 5h4c
12 − 9h5c

20 0 0

0 0 0 0 0 0 h2c
2 − h3c

3

2
4

3
5

½Z22� ¼
− h3c

2
h4c
2 − h5c

2
h3c
3 − 5h4c

12
9h5c
20 0 0

0 0 0 0 0 0 h2c
2 − h3c

3

2
4

3
5

½Z23� ¼
− h3c

6
h4c
12 − h5c

20 0 0

0 0 0 h2c
2 − h3c

3

2
4

3
5

½Z� ¼ ½0 0 0 0 0 0 0 0 0 −hc h2
c −h hðhþ 2hcÞ 0 0 �

Various submatrices appearing in Eqs. (22) and (30) are

Btbi ¼
∂ni
∂x 0
0 0

" #
;

Bt
rbj ¼

∂nj
∂x 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ∂nj

∂x 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 ∂nj

∂x 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ∂nj
∂x 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 ∂nj
∂x 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 ∂nj

∂x 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
66666666666666664

3
77777777777777775

;

Bb
rbj ¼

∂nj
∂x 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ∂nj

∂x 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 ∂nj

∂x 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ∂nj

∂x 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 ∂nj
∂x 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ∂nj

∂x 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

2
66666666666666664

3
77777777777777775

;

Bc
rbj ¼

∂nj
∂x 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ∂nj

∂x 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 ∂nj

∂x 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

2
66666664

3
77777775
;

Btsj ¼ 0 ∂nj
∂x

h i
;

Bt
rsj ¼

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ∂nj

∂x 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ∂nj
∂x 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 ∂nj
∂x 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∂nj

∂x

2
66666666666664

3
77777777777775
;

Bc
rsj ¼

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ∂nj

∂x 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ∂nj
∂x 0 0 0 0

2
66666664

3
77777775
;

Bb
rsj ¼

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ∂nj

∂x 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ∂nj
∂x 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ∂nj
∂x 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ∂nj

∂x 0 0

2
66666666666664

3
77777777777775
;

Submatrices appearing in matrices given by Eq. (30) are as
follows:

B1j ¼
∂2ni
∂x2 0
0 0

" #
;

B2j ¼

∂2nj

∂x2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ∂2nj

∂x2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 ∂2nj

∂x2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ∂2nj

∂x2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 ∂2nj

∂x2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ∂2nj

∂x2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ∂nj
∂x 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ∂nj
∂x 0 0

2
666666666666666666664

3
777777777777777777775

;

B3j ¼

∂2nj

∂x2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ∂2nj

∂x2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 ∂2nj

∂x2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 ∂nj

∂x 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ∂nj
∂x 0 0 0 0

2
66666666664

3
77777777775

;

B4j ¼

∂2nj

∂x2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ∂2nj

∂x2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 ∂2nj

∂x2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ∂2nj
∂x2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 ∂2nj

∂x2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 ∂2nj

∂x2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 ∂nj

∂x 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∂nj
∂x

2
666666666666666666664

3
777777777777777777775
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B6j ¼

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 ∂2nj

∂x2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∂2nj

∂x2

2
6666666666666664

3
7777777777777775

;

B7j ¼

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ∂2nj

∂x2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ∂2nj

∂x2 0 0 0 0

2
66666664

3
77777775
;

B8j ¼

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ∂2nj

∂x2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ∂2nj

∂x2 0 0

2
6666666666666664

3
7777777777777775

Expressions for various stiffness matrices are given by

½Ke
tb� ¼

Z Le

0
½Btb�T ð½Db

tb� þ ½Dc
tb� þ ½Dt

tb�Þ½Btb�dx;

½Ke
trb� ¼

Z Le

0
ð½Btb�T ½Db

trb�½Bb
rb� þ ½Btb�T ½Dc

trb�½Bc
rb� þ ½Btb�T ½Dt

trb�½Bt
rb�Þdx;

½Ke
rrb� ¼

Z Le

0
ð½Bb

rb�T ½Db
rrb�½Bb

rb� þ ½Bc
rb�T ½Dc

rrb�½Bc
rb� þ ½Bt

rb�T ½Dt
rrb�½Bt

rb�Þdx

½Ke
ts� ¼

Z Le

0
½Bts�T ð½Db

ts� þ ½Dc
ts� þ ½Dt

ts�Þ½Bts�dx

½Ke
trs� ¼

Z Le

0
ð½Bts�T ½Db

trs�½Bb
rs� þ ½Bts�T ½Dc

trs�½Bc
rs� þ ½Bts�T ½Dt

trs�½Bt
rs�Þdx

½Ke
rrs� ¼

Z Le

0
ð½Bb

rs�T ½Db
rrs�½Bb

rs� þ ½Bc
rs�T ½Dc

rrs�½Bc
rs� þ ½Bt

rs�T ½Dt
rrs�½Bt

rs�Þdx
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