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Abstract

Elastic plates with distributed or segmented piezoelectric layers have been analyzed using
the classical laminated plate theory, the first-order shear deformation theory, and the results
are compared with an analytical solution. The plate theories and the analytical solution take
into account both the direct and the converse piezoelectric effects, and assume generalized
plane strain deformations. The transverse displacements from both theories are in reasonable
agreement. The classical lamination theory gives a discontinuous longitudinal stress at the
edges of the segments whereas the analytical solution predicts a continuous curve with steep
gradients. Piezoelectric bimorphs with the axis of transverse isotropy inclined at an angle to
the thickness direction are also studied using the three formulations. The displacements and
stresses obtained from the first-order shear deformation theory are in very good agreement
with the analytical solution even for thick plates. It is advantageous to use shear bimorphs
since the stresses induced in them are smaller than those in extension bimorphs. 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, piezoelectric materials have been integrated with structural systems
to form a class of “smart structures”. The piezoelectric materials are capable of
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altering the structure’s response through sensing, actuation and control. By integrat-
ing surface-bonded and embedded actuators into structural systems, desired localized
strains may be induced by applying the appropriate voltage to the actuators.

In order to successfully incorporate piezoelectric actuators into structures, the
mechanical interaction between the actuators and the base structure must be fully
understood. Mechanical models were developed by Crawley and de Luis [1], Im and
Atluri [2], Crawley and Anderson [3] and others for piezoelectric patches mounted
to the top and/or the bottom surfaces of a beam. Lee [4] developed a theory for
laminated plates with distributed piezoelectric layers based on the classical lami-
nation theory. Wang and Rogers [5] applied the classical lamination theory to plates
with surface-bonded or embedded piezoelectric patches. A coupled, first-order shear
deformation theory for multilayered piezoelectric plates was presented by Huang and
Wu [6]. Jonnalagadda et al. [7] developed a theory for piezothermoelastic laminates
based on the first-order shear deformation theory and neglected the direct piezo elec-
tric effect. Mitchell and Reddy’s [8] coupled higher-order theory is based on an
equivalent single-layer theory for the mechanical displacements and layerwise discre-
tization of the electric potential. Vidoli and Batra [9] have derived a refined plate
theory capable of predicting the change in the thickness of a piezoelectric plate.
Numerous finite element studies have also been conducted (e.g. see Robbins and
Reddy [10], Heyliger et al. [11], and Batra and Liang [12]).

Ray et al. [13] and Heyliger and Brooks [14] obtained exact solutions for simply
supported linear elastic laminated plates with embedded and surface-bonded distrib-
uted piezoelectric actuators. Yang et al. [15] approximated piezoelectric actuators as
thin films and derived analytical solutions for simply supported edges. Vel and Batra
[16] have used the Eshelby–Stroh formalism to analyze the cylindrical bending of
laminated plates with distributed and segmented piezoelectric actuators. The piezoe-
lectric actuators are treated as an integral part of the structure and the three-dimen-
sional differential equations of equilibrium, simplified to the case of generalized
plane strain deformations, are exactly satisfied at every point in the body. The analyti-
cal solution is in terms of an infinite series; the continuity conditions at the interfaces
between adjoining laminae and boundary conditions at the edges are satisfied in the
sense of Fourier series. The formulation admits different boundary conditions at the
edges and is applicable to thick and thin laminated plates. Recently, Vel and Batra
[17] generalized the method to obtain three-dimensional analytical solutions for
multilayered piezoelectric rectangular plates subjected to arbitrary boundary con-
ditions.

While plate theories have been employed in the literature to obtain the displace-
ments and stresses for elastic laminates with embedded or surface-bonded piezoe-
lectric layers, it is not entirely clear whether the classical assumptions used for elastic
laminates, like inextensibility in the thickness direction, are applicable to such hybrid
laminates. Here we study the cylindrical bending of two configurations of hybrid
laminates using plate theories and compare results with those obtained by using the
analytical solution technique of Vel and Batra [16]. The edge conditions and the
loads are such that the three components of the displacement and the electric field
are functions of the two coordinates of a point—one in the longitudinal direction
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and the other in the thickness direction. The first configuration is an elastic substrate
with surface-bonded or embedded piezoelectric actuators. It is studied by using the
displacement field of the classical laminated plate theory (CLPT). The second con-
figuration is that of a cantilever piezoelectric bimorph; the axis of transverse isotropy
in each layer may be inclined to the thickness direction. Piezoelectric bimorphs can
be used for microactuation and as “fingers” of a robot gripper for moving delicate
objects in high-precision operations (e.g. see Moulson and Herbert [18] and Tzou
[19]). Due to the inclination of the axes of transverse isotropy, the piezoelectric
bimorph is studied by using the displacement field of the first-order shear defor-
mation theory (FSDT).

2. Formulations of the problems

2.1. Analytical solution

We use a rectangular Cartesian coordinate system, shown in Fig. 1, to describe
the infinitesimal quasistatic deformations of a piezoelectric laminate occupying the
region [0,L]×(2`,`)×[0,H] in the unstressed reference configuration. Planes
x3=h1,…, hn,…, hN+1 describe the bottom bounding surface, the horizontal interfaces
between adjoining laminae, and the top bounding surface. Planes
x1=l1,…, ls,…, lS+1 are the left bounding surface, the vertical interfaces between
adjoining laminae, and the right bounding surface respectively. The vertical inter-
faces are introduced to accommodate the change in the thickness of the plate due
to segmented layers and/or due to discrete changes in material properties in the
longitudinal direction. The regionls,x1,ls+1 is referred to as segments. The total
number of such segments is denoted byS. It is assumed that the electric potential
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Fig. 1. Laminated plate with segmented piezoelectric actuators.
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φ is prescribed on the top and bottom surfaces of each lamina. We postulate that
the displacement and the electric potential are functions ofx1 and x3 only and thus
the laminate is in a state of generalized plane strain. This assumption is reasonable
when the applied loads and material properties are independent ofx2 for a body of
infinite extent in thex2 direction. We denote the components of the mechanical
displacement byui, the Cauchy stress tensor bysij, the electric field byEi=2
∂f/∂xi and the electric displacement byDi. We construct a local coordinate system
x(n)

1 , x(n)
2 , x(n)

3 for the nth lamina of segments with origin at the point (ls, 0, hn) in the
global coordinate system and parallel to the global axes.

An analytical solution for thenth lamina of segments that satisfies the three-
dimensional equilibrium equations of piezoelectricity simplified to generalized plane
strain is

Fu
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where the displacement vectoru=[u1, u2, u3]T, (sk)i=sik,za=x(n)
1 +pax(n)

3 andf9(z)=df/dz.
Here pa, aa, and ba, are eigensolutions of an eigenvalue problem in the Eshelby–
Stroh formulation (Vel and Batra [16]). The analytic functionsfa(a=1,2,…,8) are
defined as
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The boundary conditions at the edgex(n)

1 =0 of segments=1 are specified as
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J Fu

f
G1Ĵ Fs1

D1
G5f(x3), (4)

where the functionf(x3) is prescribed andJ, Ĵ are 4×4 diagonal matrices with entries
either zero or one such thatJ+Ĵ=I , and I is the 4×4 identity matrix. For example,
if the edge is clamped (C) and the normal component of the electric displacement
on it is zero, thenJ=diag[1,1,1,0], Ĵ=diag[0,0,0,1] andf=0. If the edge is traction-
free (F) and the normal component of the electric displacement on it is zero, then
J=diag[0,0,0,0],Ĵ=diag[1,1,1,1] andf=0. Similarly, the boundary conditions may be
specified on the edgex(n)

1 =lS+1 and the top and bottom surfaces of the laminate. The
displacements, the traction vector and the normal component of the electric displace-
ment are assumed to be continuous at every point on the vertical interfaces between
segmentss and s+1. The displacements and the traction vector are assumed to be
continuous across the horizontal interfaces between laminaen and n+1, and the
potential is assumed to be known. We obtain the coefficientsv(j)

ma andw(j)
ma (j=1,2) in

(2) by using the classical Fourier series method to enforce the boundary conditions
on the bounding surfaces and the continuity conditions at the interfaces between
adjoining laminae (Vel and Batra [16]).

2.2. CLPT analysis

In this section we analyze elastic plates with segmented piezoelectric layers by
using the displacement field consistent with the CLPT (for brevity, the solution is
referred to as the CLPT solution). Each lamina is made of a monoclinic material
with x2=0 as the symmetry plane. We assume the following axial and transverse
displacement field (e.g. see Jones [20]) for segments of the laminate:

u1(x1,x3)=u0
1(x1)−x3

du0
3

dx1
,

u3(x1,x3)=u0
3(x1),

(5)

whereu1
0(x1) and u3

0(x1) are the axial and the transverse displacements of a point
on the reference surfacex3=0. The infinitesimal longitudinal strain associated with
the displacement field is

e115
du0

1

dx1
2x3

d2u0
3

dx2
1
. (6)

The other components of the strain tensor are identically zero. The constitutive
relationship for a piezoelectric material with its axis of transverse isotropy in thex3

direction is given in Appendix A. It is assumed that all layers are in a state of plane
stress and the in-plane electric field components are negligible as compared to the
intensity of the transverse electric field, i.e. |E(n)

1 |¿|E(n)
3 |. With contributions from

E(n)
1 neglected in the constitutive relation, the reduced stress–strain relationship can

be written (e.g. see Benjeddou et al. [21]) as
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wheres11 is the longitudinal stress,D3 is the component of the electric displacement
in the thickness direction,E(n)

3 is the electric field in the thickness direction, and

Q̄(n)
115C(n)

112(C(n)
13)2/C(n)

33, ē(n)
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HereQ̄(n)
11,ē(n)

31,ē(n)
33 are the reduced elastic stiffness, piezoelectric coefficient and dielec-

tric permittivity respectively of thenth lamina.
The transverse component of the electric displacement obtained from (7) and (6) is
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)2ē(n)
33

∂f(n)

∂x3

. (9)

With the assumption that |D(n)
1,1|¿|D(n)

3,3|, the charge equation of electrostatics
reduces to
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Integration of (10) gives the following expressions for the electric potential and the
electric field in laminan:
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wheretn=hn+12hn andh̄n=(hn+1+hn)/2 are the thickness and the midsurface coordinate
of laminan, respectively. The second term in the expression for the electric fieldE3

in (11) is the potential induced in thenth lamina due to the deformation of the plate,
i.e. the direct piezoelectric effect. Our formulation parallels that of Benjeddou et al.
[21] who retained this term, although it is often neglected.

The variational principle for a piezoelectric medium (e.g. see Tiersten [22]) gives
the following governing equations

dN11

dx1
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1
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andq is the normal surface traction. Substitution for the longitudinal stress and the
transverse electric displacement from (7) into (13) and the result into (12) yields the
following equations in terms of the displacements of the reference surface
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The superscriptsc and d respectively denote the contributions due to the converse
and the direct piezoelectric effects, and
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The variational principle also gives the following continuity conditions on the vertical
interfacex1=ls+1 between the segmentss and s+1.

vu0
1b50, vu0

3b50,v
du0

3

dx1
b50, vN11b50, v

dM11

dx1
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where vu0
1b denotes the jump in the value ofu1

0 across the vertical interface. We
assume the following boundary conditions in the CLPT for clamped (C) and traction-
free (F) edges atx1=0 andx1=L,

C: u0
1=u0

3=0,
du0

3

dx1
=0,

F: N11=0, M11=0,
dM11

dx1
=0.

(17)

Substituting for d2u1
0/dx1

2 from (14)1 into (14)2 yields a fourth-order ordinary
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differential equation inu3
0. The linear ordinary differential equations (14) for all

segments together with the continuity conditions (16) and boundary conditions (17)
are solved analytically using Mathematica [23] to obtain the displacementsu0

1(x1)
andu0

3(x1) and hence the stresss11. Other components of the stress tensor are com-
puted by integrating the 3-dimensional equations of electro-elastostatics.

2.3. FSDT analysis

Consider anN-layer plate with each layer made of a piezoelectric material whose
axis of transverse isotropy is inclined to the vertical as shown in Fig. 2. All laminae
are assumed to be of equal width and extend fromx1=0 toL. Let the axis of transverse
isotropy P (poling direction) of laminan be inclined at an anglean, to thex3-axis.
The material properties of a lamina whose axis of transverse isotropy is inclined to
the vertical are obtained by a coordinate transformation of its properties when its
axis of transverse isotropy is in the thickness direction (see Appendix A). Since the
shear strains may be non-zero due to the piezoelectric coefficientse15, e24, e26 and
e35 in the constitutive equation, we assume the following displacement field based
on the FSDT,

u1(x1,x3)=u0
1(x1)+x3j1(x1),

u3(x1,x3)=u0
3(x1),

(18)

whereu0
1(x1) andu0

3(x1) are the axial and the transverse displacements of a point on
the bottom surface andj1(x1) is the rotation of the normal about thex2-axis. The
non-zero components of the infinitesimal longitudinal straine11 and shear straine13

associated with the displacement field (18) are

e115
du0

1
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Fig. 2. N-layer piezoelectric laminate with axis of transverse isotropy inclined to thex3-axis.
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A state of plane stress is assumed in all the layers. The reduced stress–strain relation
may be written as

3
s11

s13

D3
4

(n)

53
Q̄11 Q̄15 −ē31

Q̄15 Q̄55 −ē35

ē31 ē35 ē33
4
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4, (20)

whereQ̄(n)
11,ē(n)

31,ē(n)
33 are the reduced material properties defined in the CLPT formu-

lation and
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As stated in the previous section, we postulate that |E(n)
1 |¿|E(n)

3 | and |D(n)
1,1|¿|D(n)

3,3|. The
first of these postulates and the assumption thatE2=0 eliminate the effects of piezoe-
lectric coefficientse15, e24 ande26. The transverse component of the electric displace-
ment obtained from (20) and (19) is
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The charge equation of electrostatics reduces to

D(n)
3,35ē(n)
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Integrating this equation leads to the following expressions for the electric potential
and the electric field in thenth lamina:

f(n)5
fn111fn

2
1
fn11−fn

tn
(x32h̄n)2[124(

x3−h̄n

tn
)2]
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The variational principle for a piezoelectric medium gives the following governing
equations
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dN11

dx1
=0,

dQ1

dx1
+q=0,

dM11

dx1
−Q1=0, (25)

whereq is the normal surface traction,N11 and M11 are given by (13) and

Q15ON
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E
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hn
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13dx3. (26)

Here k is the shear correction coefficient. We setk=5/6 for a laminated plate even
though this value was proposed for a homogeneous isotropic plate by Reissner [24].
Substitution of (20) into (13) and (26) and the result into (25) yields the following
equations for the displacements of the bottom surface and rotation of the normal:
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where theA’s, B’s, D’s, Nc
11 andMc

11 are defined in (15) and

Qc
152ON

n51

E
hn+1

hn

ē(n)
35

(fn+1−fn)
tn
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We assume the following boundary conditions in the FSDT for clamped (C) and
traction-free (F) edges atx1=0 andL,

C: u0
1=u0

3=0,j1=0,

F: N11=0,M11=0,Q1=0.
(29)

The linear ordinary differential equations (27) with the associated boundary con-
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ditions (29) are solved analytically using Mathematica [23] for the displacements
u0

1, u0
3 and rotationj1. Stress components(n)

11 is computed using Eq. (20), and the
remaining components of the stress tensor are evaluated by integrating the equilib-
rium equations.

3. Results and discussion

3.1. Elastic substrate with segmented actuators

We consider a homogeneous graphite-epoxy cantilever substrate with segmented
PZT-5A actuators bonded to its upper and lower surfaces as shown in Fig. 3(a). This
particular problem was studied by Crawley and Anderson [3] by using the Euler–
Bernoulli beam model. If the surfacesx3=0 andH are subjected to an identical elec-

PZT-5A

PZT-5A

Graphite-epoxy

_

PZT-5A

PZT-5A

Graphite-epoxy

+

+_

L/4 0.1H

0.1H

L/2

0φ

0φ

0.15H

0.15H

φ0

φ0

0.4L

(b)

(a)

x3

x1

x1

x3

Fig. 3. Elastic substrate with (a) surface-bonded piezoelectric actuators and (b) embedded piezoe-
lectric actuators.
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tric potentialf0, one of the actuators will elongate in the longitudinal direction and
the other will contract, causing the plate to bend. If opposite electric potentials2f0

and f0 are applied to the surfacesx3=0 andH respectively, both layers will either
elongate or contract, thus causing axial extension or contraction of the plate. In order
to accommodate the abrupt change in the thickness of the plate due to the segmented
piezoelectric actuators, the span is divided into three segments by introducing virtual
vertical interfaces atx1=L/4 and 3L/4. The continuity conditions (16) are enforced
across the vertical interfaces between the segments. The second configuration,
depicted in Fig. 3(b), has piezoelectric actuators embedded into the graphite-epoxy
substrate. We introduce a vertical interface atx1=0.4L due to the abrupt change in
material properties across this surface. The span-to-thickness ratio (L/H) for the plate
with surface-bonded actuators is 10, while the plate with embedded actuators is
thicker with L/H=5. The non-zero material properties of the graphite-epoxy and the
PZT-5A (poled in thex3-direction), taken from Tang et al. [25], are listed in Table 1.

The following non-dimensionalization of the displacements and stresses is used:

ũk5
C0uk

e0j0

, s̃jk5
Lsjk

e0j0

,

whereC0=99.201 GPa ande0=27.209 cm22. The transverse deflection in bending,
and the axial deformation in elongation are depicted in Fig. 4(a,b) respectively for
the plate with surface-bonded actuators. The CLPT overestimates the tip deflection
by 10% in bending mode and by 13% in elongation mode as compared to the analyti-
cal solution. The corresponding results for the plate with embedded actuators are
given in Fig. 4(c,d). The differences in the tip deflection for this case are 4 and 6%

Table 1
Non-vanishing material properties of graphite-epoxy and PZT-5A

Material property Graphite epoxy PZT-5A

C11 (GPa) 183.443 99.201
C22 (Gpa) 11.662 99.201
C33 (GPa) 11.662 86.856
C12 (GPa) 4.363 54.016
C13 (GPa) 4.363 50.778
C23 (GPa) 3.918 50.778
C44 (GPa) 2.870 21.100
C55 (GPa) 7.170 21.100
C66 (GPa) 7.170 22.593
e31 (cm22) 0 27.209
e32 (cm22) 0 27.209
e33 (cm22) 0 15.118
e24 (cm22) 0 12.322
e15 (cm22) 0 12.322
e11 (1028 F/m) 1.53 1.53
e22 (1028 F/m) 1.53 1.53
e33 (1028 F/m) 1.53 1.50
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Fig. 4. Longitudinal distribution of (a) transverse displacement in bending and (b) axial displacement
in extension for surface-bonded actuators; (c) transverse displacement in bending and (d) axial displace-
ment in extension for embedded actuators.

in bending and elongation modes respectively. The deviations are smaller for the
plate with embedded actuators although it is thicker than the plate with surface-
mounted actuators. The CLPT predicts a linear variation in the longitudinal direction
of the axial displacement in the segment with piezoelectric actuators [see Fig. 4(b
and d)] and a constant value in the other segment(s). In comparison the analytical
solution gives a smooth variation of the axial displacement. An explanation is that
the CLPT is designed to account for the bending of the plate due to normal tractions
applied on its upper and lower surfaces. Equation (15)3 implies thatNc

11 and Mc
11

vanish in the portions of the plate without the PZTs. In the absence of axial forces
these parts of the substrate undergo rigid motions.

The axial variation of the longitudinal stress in the graphite-epoxy substrate is
depicted in Fig. 5(a) for the bending mode and in Fig. 5(b) for the extension mode
for the plate with surface-bonded actuators. The corresponding results for embedded
actuators are plotted in Fig. 5(c,d). The CLPT predicts a piecewise constant longitudi-
nal stress along the span of the plate. The discontinuity at the vertical interfaces
between the segments is because the continuity of the longitudinal stress is satisfied
only in an average sense. In comparison we obtain a continuous longitudinal stress
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Fig. 5. Longitudinal distribution of the axial stress in the substrate for (a) bending and (b) extension
with surface-bonded actuators; (c) bending and (d) extension with embedded actuators.

from the analytical solution since the continuity of the traction is enforced at every
point along the vertical interfaces between the segments. The kinks in the analytical
solution for the longitudinal stress across the vertical interface between adjacent
segments are due to the truncation of the infinite series in (2) to 800 terms. The
consideration of more terms reduces and even eliminates these kinks. The through-
thickness distribution of the longitudinal stress at two locations within the piezoe-
lectric actuators is plotted in Fig. 6. Fig. 6(a) corresponds to the bending and Fig.
6(b) is for the extension of the plate with surface-bonded actuators. The CLPT gives
a piecewise linear variation of the longitudinal stress in the bending mode and a
piecewise constant variation in the extension mode. The analytical and the CLPT
curves almost overlap at the midsectionx1=0.5L, but there is significant deviation
near the edge of the piezoelectric segment atx1=0.7L. The corresponding through-
thickness variations of the longitudinal stress for embedded actuators are shown in
Fig. 6(c,d). Their behavior is qualitatively similar to that observed in plates with
surface-mounted actuators.
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3.2. Extension-shear bimorph

Consider a cantilever bimorph made of two transversely isotropic piezoelectric
layers of equal thickness with the axis of transverse isotropy inclined to the normal
to the plate as shown in Fig. 7. Whena=0, the direction of transverse isotropy in
the two layers points in opposite directions. The piezoelectric coefficiente31 for the
two layers is of equal magnitude but of opposite signs sincee31(0°)=e31 and

Fig. 7. Cantilever piezoelectric bimorph configuration.
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e31(180°)=2e31. Thus the application of an electric field causes one layer to elongate
in the axial direction and the other to contract, forcing the piezoelectric bimorph to
bend in the transverse direction. This is referred to as anextension bimorph. It is
the conventional bimorph configuration found in the literature (Moulson and Herbert
[18] and Tzou [19]). Whena=90°, the polarizations in both layers are parallel to
the x1-axis ande35(90°)=e15,e26(90°)=e24. Since E2=0 for the cylindrical bending
problem, thereforee24 does not induce any shear deformations. The application of
an electric field in thex3-direction would produce a pure shear deformation of the
bimorph thus causing it to deflect in the transverse direction. This configuration is
known as ashear bimorph. Zhang and Sun [26] have studied sandwich structures
with cores made of shear mode piezoelectric materials. For intermediate values of
a (0°,a,90°), both e31(a) and e35(a) are in general non-zero for both layers and
the transverse deflection is due to a combination of extension as well as shear defor-
mation even when an electric field is applied only in thex3-direction. We refer to
such a configuration as acombined extension-shear bimorph. Vidoli and Batra [9]
have used their refined plate theory to study deformations of a single layer of piezoe-
lectric material with the axis of transverse isotropy inclined at an angle to the verti-
cal axis.

The variation of the transverse tip deflection witha is depicted in Fig. 8(a,b) for
length-to-thickness ratios of 10 and 5 respectively. The FSDT solution compares
very well with the analytical solution for all values ofa, and the CLPT results are
good only for small values ofa. This is because the coefficiente35 does not appear
in the CLPT formulation and it cannot account for shear deformation. The analytical
and the FSDT solutions show that the maximum tip deflection is realized in a com-
bined extension-shear bimorph ata.20° when the span-to-thickness ratio is 10 and
at a.28° when the ratio is 5. In general, this angle would depend on the material
properties of the laminae. Fig. 8(c,d) depict the variation of the longitudinal stress
at the midspan versusa. The CLPT and the FSDT capture the behavior of the longi-
tudinal stress very well for all values ofa. It should be noted that, for a given tip
deflection, the longitudinal stress is significantly smaller in a shear bimorph than
that in an extension bimorph.

The transverse deflection of the midsurface of the bimorph withL/H=5 is plotted
in Fig. 9 for anglesa=0°, 30°, 60° and 90°. It is parabolic for an extension bimorph
and linear for a shear actuation bimorph as shown in Fig. 9(a and d). The FSDT
gives very accurate transverse deflection at all points along the span, for all angles.
As expected, the CLPT results are in significant error for large values ofa. Fig. 10
depicts the through-thickness distribution of the electric field, the axial displacement,
the transverse deflection and the longitudinal stress fora=45° andL/H=5. The ana-
lytical solution for the electric field at the midspan shown in Fig. 10(a) has a piece-
wise linear variation within each layer except at points close to the top and bottom
surfaces. The electric field has been nondimensionalized asẼ3=2E3H/j0. The CLPT
and the FSDT are able to capture this linear behavior since the formulation accounts
for the direct piezoelectric effect. The through-thickness variation of the axial tip
deflection predicted by all three theories is essentially the same [Fig. 10(b)]. The
analytical solution predicts that the top and bottom surfaces of the bimorph deflect
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more than the midsurface as shown in Fig. 10(c). Thus the thickness of the upper
layer increases and that of the lower one decreases. The FSDT assumes a constant
transverse deflection through the thickness of the bimorph, and is able to capture
the average transverse deflection. The through-thickness variation of the longitudinal
stress near the free edge of the bimorph is depicted in Fig. 10(d). The analytical
solution deviates noticeably from the piecewise linear distribution of the CLPT and
the FSDT. The through-thickness distribution ofs13 obtained from the analytical
solution at a location close to the free edge is plotted in Fig. 11 for various values
of the anglea. The FSDT results are not shown since it cannot capture the highly
localized behavior of the transverse shear stress. The shear stress is largest on the
interface between the bimorphs and decreases asa increases. It is negligible for
shear bimorphs (a=90°). Thus, for a given tip deflection, the transverse shear stress
on the interface and the longitudinal stress are significantly smaller for shear
bimorphs than those for extension bimorphs.
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4. Conclusions

Elastic plates with distributed or segmented piezoelectric layers have been ana-
lyzed by using three different formulations. The first is an analytical technique wher-
ein the three-dimensional equilibrium equations of piezoelectricity are satisfied
exactly, and the boundary conditions on the bounding surfaces and continuity con-
ditions on the interfaces between adjoining laminae are satisfied in the sense of
Fourier series. The second formulation is based on the displacement field of the
CLPT and accounts for both the direct and the converse piezoelectric effects. The
third formulation, based on the displacement field of the FSDT, can be used even
when the axis of transverse isotropy of the piezoelectric lamina are inclined at an
angle to the thickness direction.

We have analyzed elastic plates with surface-bonded and embedded segmented
actuators by using the analytical technique and the CLPT. The transverse displace-
ments from both theories are in reasonable agreement with each other. The longitudi-
nal stress from the CLPT is discontinuous between the segments, while that obtained
from the analytical solution is continuous and has a steep gradient. We have also
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studied piezoelectric bimorphs whose axis of transverse isotropy is inclined at an
angle to the thickness direction. The results for the displacements and longitudinal
stress from the FSDT compare very well with those obtained from the analytical
solution even for thick plates and for all angles of inclination. For the same deflec-
tion, the transverse shear stress on the interface and the longitudinal stress in shear
bimorphs are substantially smaller than those in extension bimorphs. It is advan-
tageous to use a shear bimorph since the high stresses in an extension bimorph can
be detrimental to its structural integrity.

As has been shown by Vel and Batra [16] amongst others, the CLPT, the FSDT
and the analytical technique used here give very good results for thin plates. The
analytical method is valid for both thick and thin laminates, even when edges of
adjoining laminae are subjected to different boundary conditions.
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Appendix A

The constitutive equation for a piezoelectric material with the axis of transverse
isotropy in thex3 direction is:
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If the axis of transverse isotropy is inclined at an anglea to thex3-axis (see Fig.
2), then the constitutive equation is
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where the transformed material properties are

C11(a)=C11c4+2(C13+2C55)c2s2+C33s4, C12(a)=C12c2+C23s2,

C13(a)=C13c4+(C11+C33−4C55)c2s2+C13s4, C22(a)=C22,

C33(a)=C33c4+2(C13+2C55)c2s2+C11s4 C23(a)=C23c2+C12s2

C15(a)=(C13−C11+2C55)c3s+(C33−C13−2C55)cs3, C25(a)=(C23−C12)cs,

C35(a)=(C33−C13−2C55)c3s+(C13−C11+2C55)cs3, C44(a)=C44c2+C66s2,

C55(a)=C55c4+(C11−2C13+C33−2C55)c2s2+C55s4, C46(a)=(C44−C66)cs,

C66(a)=C66c2+C44s2,

e11(a)=(e31+2e15)c2s+e33s3, e12(a)=e32s,

e13(a)=(e33−2e15)c2s+e31s3, e15(a)=e15c3+(e33−e31−e15)cs2,

e24(a)=e24c, e26(a)=e24s,

e31(a)=e31c3+(e33−2e15)cs2, e32(a)=e32c,

e33(a)=e33c3+(e31+2e15)cs2, e35(a)=(e33−e31−e15)c2s+e15s3,

e11(a)=e11c2+e33s2, e22(a)=e22,

e33(a)=e11s2+e33c2, e13(a)=cs(e33−e11).

Here c=cosa and s=sina.
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