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Abstract

We use the principle of virtual work to derive a higher-order shear and normal deformable theory for a plate comprised of a linear

elastic incompressible anisotropic material. The theory does not use a shear correction factor and employs three components of

displacement and the hydrostatic pressure as independent variables. For a Kth order plate theory, a set of 4ðK þ 1Þ coupled equations

need to be solved for the ðK þ 1Þ pressures and the 3ðK þ 1Þ displacements defined on the reference surface of the plate.

Equations for free vibrations of a plate are derived, and equations for the determination of frequencies and the corresponding mode

shapes of a simply supported rectangular plate are given.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Because of the increasing interest in rubberlike materials
and elastomers and their use in automotive and aerospace
industries we develop here a higher-order shear and normal
deformable theory for plates made of incompressible linear
elastic materials. Only isochoric or volume preserving
deformations are admissible in an incompressible material.
Accordingly, the constitutive relation for an incompressible
material involves a hydrostatic pressure that cannot be
determined from the strain field but is found by solving
equations governing deformations of the body and the
prescribed initial and boundary conditions. The pressure
field can be determined uniquely only if normal surface
tractions are prescribed on a part of the boundary of the
body. Thus for a plate made of an incompressible material
we need not only equations to find the displacement field
but also the pressure field.

Aimmanee and Batra [1] have recently given an
analytical solution for free vibrations of a simply supported
e front matter r 2007 Elsevier Ltd. All rights reserved.
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rectangular plate made of an incompressible linear elastic
material. For a thick plate their results show that the
displacement and the pressure fields do not vary linearly
through the plate thickness. Also, for a thick plate
frequencies of some in-plane modes of vibration with the
lateral deflection identically zero are lower than those of
the out-of-plane modes of vibration with non-vanishing
lateral deflections. We develop here a plate theory in which
the three displacement components and the pressure are
expanded in Taylor series in the thickness coordinate, z,
and terms of the same degree in z are retained in their
expansions. Since both transverse shear and transverse
normal strains are considered, we call the theory shear and
normal deformable. The plate theory is called Kth order if
terms of order zK are kept in the Taylor series expansions
in z of displacements and the pressure field. The order of
the theory suitable for a plate depends upon the ratio, R, of
the plate thickness to the characteristic in-plane dimension
and which aspects of the 3-dimensional (3-D) deformations
are to be well approximated; a small value of K suffices for
a thin plate with R51.
Batra and Vidoli [2] followed Mindlin and Medick [3] in

using Legendre polynomials in z as basis functions to
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derive a mixed higher-order shear and normal deformable
plate theory (HOSNDPT) for piezoelectric plates from a
mixed variational principle [4]. Subsequently, Batra et al.
[5] employed the Reissner–Hellinger mixed principle to
deduce a mixed HOSNDPT and also a compatible
HOSNDPT. Whereas in the former independent expan-
sions for displacements and stresses are presumed, in the
latter only displacements are expanded. Strains deduced
from the displacement field and the pertinent constitutive
relation are used to find stresses. Here we employ the
principle of virtual work to derive a compatible
HOSNDPT for a plate made of an incompressible
anisotropic linear elastic inhomogeneous or functionally
graded material. We do not require that the transverse
normal and/or the transverse shear strains must vanish on
the top and the bottom surfaces of a plate. Thus the effect
of tangential tractions applied on these surfaces can be
studied.

There are numerous papers on plate theories. However,
they assume the plate material to be compressible.
Herrmann [6] reorganized equations of linear elasticity so
that they are applicable to both compressible and
incompressible materials; these also involve the three
components of displacement and the pressure as un-
knowns. Other works that consider transverse normal
and transverse shear strains include those of Mindlin and
Medick [3], Vlasov [7], Lo et al. [8], Kant [9], Hanna and
Leissa [10], Reddy [11], Lee and Yu [12], and Lee et al. [13].
This list is by no means complete since the number of
papers on plate theories is too large to be included here.

2. Formulation of the problem

We use rectangular Cartesian coordinates to describe
infinitesimal deformations of a plate made of an incom-
pressible linear elastic material. Let the x1x2-plane coincide
with the mid-surface of the plate and the x3-axis be along
the thickness direction. With h equaling the plate thickness,
we normalize lengths by h=2 so that x3 ¼ þ1 and �1 at
points on the top and the bottom surfaces, Sþ and S�,
respectively, of the plate.

Equations governing 3-D infinitesimal deformations of a
linear elastic incompressible body are

sij;j þ rbi ¼ r €ui in O; i ¼ 1; 2; 3, (1)

ui;i ¼ 0 in O, (2)

sijnj ¼ t̄i on qtO; ui ¼ ūi on quO, (3)

uiðx; 0Þ ¼ u0
i ðxÞ; _uiðx; 0Þ ¼ _u0

i ðxÞ in O, (4)

sij ¼ �pdij þ ŝij in O, (5)

ŝij ¼ Cijklekl in O; Cijkl ¼ Cjikl ¼ Cijlk, (6)

ekl ¼ ðuk;l þ ul;kÞ=2 in O. (7)
Here and below, r is the mass density, sij the stress tensor,
bi the body force per unit mass, a superimposed dot
denotes partial differentiation with respect to time t,
sij;j ¼ qsij=qxj, and O is the 3-D region occupied by the
plate. Furthermore, ui is the displacement component
along the xi-direction, n an outward unit normal to the
boundary qO of O, t̄i the prescribed traction at points on
qtO, ūi the prescribed displacement at points on quO, u0

i the
prescribed initial displacement, and _u0

i the assigned initial
velocity field. A repeated index implies summation over the
range of the index. Eq. (1) expresses the balance of linear
momentum, (2) the continuity equation or the balance of
mass, ð3Þ1 and ð3Þ2 boundary conditions, and ð4Þ1 and ð4Þ2
are initial conditions. Eq. (5) is the constitutive relation in
which dij is the Kronecker delta, and the hydrostatic
pressure p cannot be determined from the deformation field
but can be found by solving the system of partial
differential equations (1) and boundary conditions (3).
The pressure p is uniquely determined only if normal
surface tractions are prescribed on a part of the boundary.
The part ŝij of the stress tensor in Eq. (5) is a linear
function of the infinitesimal strain eij . The number of
independent components of the elasticity tensor Cijkl equals
1, 4, 8 and 20 for an isotropic, transversely isotropic,
orthotropic, and anisotropic incompressible material re-
spectively. Expressions for Cijkl in terms of more familiar
elastic constants are given, e.g., in [14]. For an inhomoge-
neous body (e.g. functionally graded) elasticities Cijkl vary
continuously throughout the body. The infinitesimal strain
eij is related to the displacement gradients by Eq. (7).
For a plate usually surface tractions are prescribed on its

top, Sþ, and bottom, S�, surfaces. However, displacements
and/or surface tractions may be prescribed on edge
surfaces of the plate.
In the absence of body forces, Eqs. (1), (2) and (5)–(7)

imply that the hydrostatic pressure p is a harmonic
function for a homogeneous and isotropic body. That is,
it satisfies the Laplace equation.

3. Derivation of the higher-order plate theory

Let L0ðzÞ; L1ðzÞ; L2ðzÞ; . . . be orthonormal Legendre
polynomials satisfyingZ 1

�1

LaðzÞLbðzÞdz ¼ dab; a; b ¼ 0; 1; 2; . . . ;K . (8)

Note that

L0ðzÞ ¼
1ffiffiffi
2
p ; L1ðzÞ ¼

ffiffiffi
3

2

r
z; L2ðzÞ ¼

ffiffiffi
5

2

r
3z2

2
�

1

2

� �
,

L3ðzÞ ¼

ffiffiffi
7

2

r
�3

z

2
þ

5

2
z3

� �
; . . . . ð9Þ

The basis functions L0ðzÞ;L1ðzÞ; . . . ;LK ðzÞ are equivalent to
1; z; z2; . . . ; zK , and are, alternatively, even and odd
functions of z. An advantage of using orthonormal basis
functions is that the algebraic work is reduced. Henceforth
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we set x3 ¼ z, and

uiðx1;x2; z; tÞ ¼ vaðx1;x2; z; tÞdia þ wðx1; x2; z; tÞdi3,

a ¼ 1; 2. ð10Þ

That is, va denotes the in-plane components of displace-
ment, and w the lateral deflection of a point in the plate.
Let

vaðx1;x2; z; tÞ ¼ LaðzÞv
a
aðx1;x2; tÞ; a ¼ 0; 1; 2; . . . ;K ,

wðx1;x2; z; tÞ ¼ LaðzÞw
aðx1;x2; tÞ, (11)

pðx1; x2; z; tÞ ¼ LaðzÞp
aðx1; x2; tÞ.

Here and below the repeated index a is summed even if it
appears as a subscript and a superscript. Noting that
L0aðzÞ ¼ dLaðzÞ=dz can be expressed as a linear combination
of L0;L1;L2; . . . ;LK , we write it as

L0aðzÞ ¼ DabLbðzÞ. (12)

For K ¼ 7, the 8� 8 matrix D is given by

½D� ¼

0 0 0 0 0 0 0 0ffiffiffi
3
p

0 0 0 0 0 0 0

0
ffiffiffiffiffi
15
p

0 0 0 0 0 0ffiffiffi
7
p

0
ffiffiffiffiffi
35
p

0 0 0 0 0

0 3
ffiffiffi
3
p

0 3
ffiffiffi
7
p

0 0 0 0ffiffiffiffiffi
11
p

0
ffiffiffiffiffi
55
p

0 3
ffiffiffiffiffi
13
p

0 0 0

0
ffiffiffiffiffi
39
p

0
ffiffiffiffiffi
91
p

0
ffiffiffiffiffiffiffiffi
143
p

0 0ffiffiffiffiffi
15
p

0 5
ffiffiffi
3
p

0 3
ffiffiffiffiffi
15
p

0
ffiffiffiffiffiffiffiffi
195
p

0

2
66666666666664

3
77777777777775

.

(13)

Note that all elements of the first row and the last column
of the matrix D are zeroes. Eqs. (11) and (12) give

va;b ¼ Lava
a;b; va;z ¼ DabLbva

a,

w;a ¼ Lawa
;a; w;z ¼ DabLbwa. (14)

Thus

eij ¼ La½
1
2
ðva

a;b þ va
b;aÞdiadjb þ

1
2
ðdiadj3 þ di3djaÞ

�ðDbavb
a þ wa

;aÞ þ di3dj3Dbawb�, ð15Þ

� Laea
ij. ð16Þ

Here ea
ij can be thought of as the strain derived from the

ath-order displacement field, and terms on the right-hand
side of Eq. (11) as Taylor series expansions of va; w and p

in the z-direction. Recall that for an incompressible
material the pressure p is to be determined as a part of
the solution of the problem. The value of K or equivalently
the number of terms to be retained in Eq. (11) depends
upon R, and which aspects of the 3-D deformations in the
plate theory are to be approximated well. The plate theory
is called higher-order if KX2.
4. Derivation of plate theory equations

4.1. Balance laws

Let Zi be a smooth virtual displacement field defined on
O that vanishes on quO, and l be a smooth scalar field
defined on O. Taking the inner product of both sides of
Eq. (1) with g, multiplying both sides of Eq. (2) with a
Lagrange multiplier function l, and integrating the
resulting equations over O, we obtain
Z

S

dA

Z 1

�1

Zisij;j dzþ

Z
S

dA

Z 1

�1

rbiZi dz ¼

Z
S

dA

Z 1

�1

r €uiZi dz,

(17)

Z
S

dA

Z 1

�1

lui;i dz ¼ 0, (18)

where the area integration is over the midsurface S of the
plate. We assume that

Ziðx1;x2; zÞ ¼ LaðzÞZa
i ðx1;x2Þ,

lðx1;x2; zÞ ¼ LaðzÞl
a
ðx1;x2Þ, (19)

substitute these into Eqs. (17) and (18), define

Ma
ab ¼

Z 1

�1

sabLa dz; Ta
i ¼

Z 1

�1

si3La dz,

Rab ¼

Z 1

�1

rLaLb dz,

ba
i ¼

Z 1

�1

rLabi dz,

Ba
i ¼ Lað1Þsi3ðx1;x2; 1Þ � Lað�1Þsi3ðx1;x2;�1Þ, ð20Þ

and obtainZ
S

Za
aMa

ab;b dAþ

Z
S

Za
3Ta

a;a dAþ

Z
S

Za
i ðb

a
i þ Ba

i �DabTb
i ÞdA

¼ Rab

Z
S

Za
i €u

b
i dA, ð21Þ

Z
S

la
ðva

a;a þDcawcÞdA ¼ 0. (22)

Here M0
ab are the in-plane forces, M1

ab the out-of-plane
moments, and Ma

ab; aX2 are the higher order out-of-plane
moments. Similarly T0

i equal the resultant transverse
forces, T1

i the first-order moment of the transverse forces,
and Ta

i ; aX2 the higher-order moment of transverse forces.
R00 equals the mass per unit area of the plate, R11 the
rotary inertia, and Rab; a; bX2 the higher-order inertia.
Furthermore ba

i are ath-order moments of the body force
about the mid-surface of the plate. In particular, b0

i equals
the body force per unit surface area, and b1

i the moment per
unit area of the body force. Ba

i are the ath-order moments
of surface tractions applied on the top and the bottom
surfaces of the plate. For equal and opposite surface
tractions prescribed on the top and the bottom surfaces
of the plate, B0

i ¼ B2
i ¼ B4

i ¼ � � � ¼ 0, but B1
i ; B3

i . . . are
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non-zero. Thus squeezing of a plate and/or its deforma-
tions due to equal and opposite normal tractions on the top
and the bottom surfaces of the plate can be analyzed.
Furthermore, the transverse shear strains are not required
to vanish on the top and the bottom surfaces of the plate.
Thus the effect of tangential tractions applied on these
surfaces can be considered. Since Eqs. (21) and (22) must
hold for all choices of Za

i and la, we get

Ma
ab;b �DabTb

a þ ba
a þ Ba

a ¼ Rab €v
b
a, (23)

Ta
a;a �DabTb

3 þ ba
3 þ Ba

3 ¼ Rab €w
b, (24)

va
a;a þDcawc ¼ 0. (25)

Substitution for sij from Eq. (5) and for p from Eq. ð11Þ3
into Eqs. ð20Þ1 and ð20Þ2 gives

Ma
ab ¼ �padab þ M̂

a

ab; M̂
a

ab ¼

Z 1

�1

Laŝab dz,

Ta
3 ¼ �pa þ T̂

a

3; T̂
a

3 ¼

Z 1

�1

Laŝ33 dz. (26)

Thus Eqs. (23) and (24) simplify to

M̂
a

ab;b � pa
;a �DabTb

a þ ba
a þ Ba

a ¼ Rab €v
b
a, (27)

Ta
a;a þDabpb �DabT̂

b

3 þ ba
3 þ Ba

3 ¼ Rab €w
b. (28)

Eqs. (27), (28) and (25) are the balance laws for the plate
theory, and subject to appropriate initial and boundary
conditions are to be solved simultaneously for va;wa and
pa. These need to be supplemented by constitutive
relations, and initial and boundary conditions which are
discussed below.

4.2. Constitutive relations

Substitution for r̂ from Eq. (6) into Eqs. ð26Þ2, ð26Þ4 and
ð20Þ2, and then for eij from Eq. (15) into the resulting
equations give

M̂
a

ab ¼

Z 1

�1

LaCabklLb dz

� �
eb

kl ,

T̂
a

3 ¼

Z 1

�1

C33klLaLb dz

� �
eb

kl ,

T̂
a

a ¼

Z 1

�1

Ca3klLaLb dz

� �
eb

kl . ð29Þ

For a homogeneous body the elasticities Cijkl and the
mass density r are constants. Eqs. ð20Þ3 and (29) simplify to

Rab ¼ rdab; M̂
a

ab ¼ Cabkle
a
kl ; T̂

a

3 ¼ C33kle
a
kl ,

Ta
a ¼ Ca3kle

a
kl . ð30Þ

Because of the use of the orthonormal Legendre poly-
nomials as basis functions the rotary inertia R11 equals r in
our formulation.
For an inhomogeneous (often called functionally
graded) body, the elasticities and the mass density may
be expressed as

Cijkl ¼ LaðzÞC
a
ijklðx1;x2Þ; r ¼ LaðzÞraðx1;x2Þ. (31)

Vel and Batra [15–17] and Lee and Yu [12] have employed
expansions (31) and the assumptions of Ca

ijkl and ra being
independent of x1 and x2 to solve problems for plates made
of functionally graded materials with material properties
varying only in the z-direction. For known spatial
variations of Cijkl and r the definite integrals in
Eqs. ð20Þ3 and (29) can be evaluated by using an
appropriate quadrature rule as has been done, for example,
by Qian and Batra [18] and Gilhooley et al. [19] for plates
made of a compressible material. The variation in the
z-direction of the mass density and the material elasticities
may influence the order K of the plate theory to be used.
Whereas Refs. [12,15–19] assumed that material properties
vary only in the thickness direction, Qian and Batra [20]
determined the variation of material properties in the x1x2-
plane so as to optimize the lowest frequency of free
vibration of the plate. Batra and Jin [21] have found the
gradation in material moduli along the thickness direction
by varying the fiber orientation angle that optimizes the
fundamental frequency. Eqs. (29), (31) and ð20Þ3 give

M̂
a

ab ¼ AabdCd
abkle

b
kl ; Ta

a ¼ AabdCd
a3kle

b
kl ,

T̂
a

3 ¼ AabdCd
33kle

b
kl ; Aabd ¼

Z 1

�1

LaLbLd dz,

Rab ¼ Aabdrd . ð32Þ

The quantities Aabc can be evaluated exactly since they
involve simple polynomials in z. The number of terms
retained in expansions (31) need not equal the order K of
the plate theory.
4.3. Boundary conditions

The traction boundary conditions (3) on the top and the
bottom surfaces of the plate have been incorporated in
Eqs. (23) and (24). If surface tractions t̄i are prescribed on
an edge surface of the plate with the outward unit normal
n, then the corresponding boundary conditions for the
plate theory are

Z 1

�1

Lasijnj dz ¼

Z 1

�1

Lat̄i dz. (33)

Assuming that nj ¼ djana, i.e., the outward unit normal to
the edge surface of the plate is in the x1x2-plane, then
n3 ¼ 0, and Eq. (33) becomes

Ma
abnb ¼

Z 1

�1

Lat̄a dz; Ta
3 ¼

Z 1

�1

Lat̄3 dz. (34)

In particular, if the edge surface x1 ¼ constant is traction
free, then ni ¼ d1i, and boundary conditions (34) on
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it become

Ma
a1 ¼ 0; Ta

3 ¼ 0; a ¼ 1; 2; a ¼ 0; 1; 2; . . . ;K . (35)

From the displacement boundary conditions (3)2 we
conclude that

va
a ¼

Z 1

�1

Laūa dz; wa ¼

Z 1

�1

Laū3 dz. (36)

Thus at a clamped edge,

va
a ¼ 0; wa ¼ 0. (37)

Corresponding to the boundary conditions w ¼ 0,
sabnb ¼ 0 at a simply supported edge, we have

w ¼ 0; Mabnb ¼ 0, (38)

on a simply supported edge. There is general agreement
among practioners about boundary conditions at a free
edge and at a clamped edge. However, boundary condi-
tions (38) at a simply supported edge are not universally
accepted.

4.4. Initial conditions

Substitution from Eqs. (10) and (11) into Eqs. ð4Þ1 and
ð4Þ2, multiplication of both sides of the resulting equations
with LaðzÞ, and integration with respect to z on ½�1; 1� yield

va
aðx1;x2; 0Þ ¼

Z 1

�1

u0
aðx1; x2; zÞLaðzÞdz,

waðx1;x2; 0Þ ¼

Z 1

�1

u0
3ðx1; x2; zÞLaðzÞdz,

_va
aðx1;x2; 0Þ ¼

Z 1

�1

_u0
aðx1; x2; zÞLaðzÞdz,

_waðx1;x2; 0Þ ¼

Z 1

�1

_u0
3ðx1; x2; zÞLaðzÞdz. ð39Þ

4.5. Special cases

We presume that the plate is made of a homogeneous
and isotropic material. Thus

Cijkl ¼ mðdikdjl þ dildjkÞ, (40)

where m is the shear modulus. There is only one material
parameter for an isotropic incompressible linear elastic
material.

For K ¼ 0, Eqs. (11), (25), (27), (28) and (30) give

vaðx1;x2; z; tÞ ¼
1ffiffiffi
2
p v0aðx1; x2; tÞ; a ¼ 1; 2,

wðx1;x2; z; tÞ ¼
1ffiffiffi
2
p w0ðx1;x2; tÞ, (41)

pðx1; x2; z; tÞ ¼
1ffiffiffi
2
p p0ðx1;x2; tÞ;

v0a;a ¼ 0,
M̂
0

ab;b � p0
;a þ b0

a þ B0
a ¼ r€v0a, (42)

T0
a;a þ b0

3 þ B0
3 ¼ r €w0;

M̂
0

ab ¼ 2me0ab; T̂
0

3 ¼ 2me033; T̂
0

a ¼ 2me03a,

e0ab ¼
1
2
ðv0a;b þ v0b;aÞ; e033 ¼ 0; e0a3 ¼

1
2
w0
;a. (43)

Substitution from Eqs. (43) into ð42Þ2;3 and recalling
Eq. ð42Þ1 give

mv0a;bb � p0
;a þ b0

a þ B0
a ¼ r€v0a,

mw0
;aa þ b0

3 þ B0
3 ¼ r €w0. (44)

In this theory, the plate thickness remains unaltered and
deformations associated with the bending of the plate
are ignored. The incompressibility condition requires that
the area of each infinitesimal element of plate’s midsurface
remain unchanged as signified by Eq. ð42Þ1. The pressure
field is independent of the z-coordinate; its variation on
plate’s midsurface is embedded in Eq. ð44Þ1. Eqs. ð44Þ1 and
ð44Þ2 governing the in-plane and the transverse displace-
ments of a point are uncoupled. Eq. ð44Þ2 coincides with
the equation governing transverse deflections of a mem-
brane. Eqs. ð42Þ1 and ð44Þ1 determine the in-plane
stretching of the membrane and the hydrostatic pressure
in the plate. Needless to say this theory will give very
approximate results for a plate, and the approximation
improves with a decrease in the ratio, R, of the plate
thickness to the largest in-plane dimension.
For K ¼ 1, Eqs. (11), (25), (27), (28) and (30) yield

vaðx1; x2; z; tÞ ¼
1ffiffiffi
2
p v0aðx1;x2; tÞ þ

ffiffiffi
3

2

r
zv1aðx1;x2; tÞ,

wðx1; x2; z; tÞ ¼
1ffiffiffi
2
p w0ðx1; x2; tÞ þ

ffiffiffi
3

2

r
zw1ðx1;x2; tÞ, (45)

pðx1;x2; z; tÞ ¼
1ffiffiffi
2
p p0ðx1;x2; tÞ þ

ffiffiffi
3

2

r
zp1ðx1;x2; tÞ;

v0a;a þ
ffiffiffi
3
p

w1 ¼ 0,

M̂
0

ab;b � p0
;a þ b0

a þ B0
a ¼ r€v0a, (46)

T0
a;a þ b0

3 þ B0
3 ¼ r €w0;

v1a;a ¼ 0,

M̂
1

ab;b � p1
;a �

ffiffiffi
3
p

T0
a þ b1

a þ B1
a ¼ r€v1a, (47)

T1
a;a þ

ffiffiffi
3
p

p0 �
ffiffiffi
3
p

T̂
0

3 þ b1
3 þ B1

3 ¼ r €w1;

M̂
a

ab ¼ 2mea
ab; T̂

a

3 ¼ 2mea
33; Ta

a ¼ 2mea
3a; a ¼ 0; 1;
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ea
ab ¼

1
2
ðva

a;b þ va
b;aÞ; e033 ¼

ffiffiffi
3
p

w1; e0a3 ¼
1
2
ðw0

;a þ
ffiffiffi
3
p

v1aÞ,

(48)

e133 ¼ 0; 2e1a3 ¼ w1
;a.

This theory generalizes the first-order shear deformation
theory in that it also considers changes in the plate
thickness or equivalently the term w1 representing trans-
verse normal strains. The in-plane displacements, the
transverse deflection and the pressure field are assumed
to vary linearly through the plate thickness.

The first order transverse displacement w1 affects the
zeroth-order in-plane displacement v0a through Eqs. ð46Þ1
and ð47Þ2. Fields p0; v0a;w

0 for the first-order shear and
normal deformable plate theory are not necessarily the
same as those for the zeroth-order plate theory.

Note that the partial differential equations for v0a;w
0; v1a

and w1 are second-order. Thus no special techniques are
needed to find an approximate solution of the initial-
boundary-value problems defined on the mid-surface S of
the plate.

The constraints w1 ¼ 0, v11 ¼ �qw0=qx1, v12 ¼ �qw0=qx2,
v0a ¼ 0 will give the Kirchhoff plate theory. The constraint
w1 ¼ 0 will reduce the present first-order shear and normal
deformable plate theory to the first-order shear deforma-
tion theory.

For K ¼ 3,

vaðx1;x2; z; tÞ

¼
1ffiffiffi
2
p v0aðx1;x2; tÞ þ

ffiffiffi
3

2

r
zv1aðx1;x2; tÞ

þ

ffiffiffi
5

2

r
3z2 � 1

2
v2aðx1;x2; tÞ

þ

ffiffiffi
7

2

r
�3zþ 5z3

2

� �
v3aðx1; x2; tÞ, ð49Þ

and similar expressions hold for w and p. Eqs. ð46Þ2;3 and
ð47Þ2;3 are supplemented with the following equations.

v0a;a þ
ffiffiffi
3
p

w1 þ
ffiffiffi
7
p

w3 ¼ 0,

v1a;a þ
ffiffiffiffiffi
15
p

w2 ¼ 0,

v2a;a þ
ffiffiffiffiffi
35
p

w3 ¼ 0,

v3a;a ¼ 0; ð50Þ

M̂
2

ab;b � p2
;a �

ffiffiffiffiffi
15
p

T1
a þ b2

a þ B2
a ¼ r€v2a,

T2
a;a þ

ffiffiffiffiffi
15
p

p1 �
ffiffiffiffiffi
15
p

T̂
1

3 þ b2
3 þ B2

3 ¼ r €w2; ð51Þ

M̂
3

ab;b � p3
;a � ð

ffiffiffi
7
p

T0
a þ

ffiffiffiffiffi
35
p

T2
aÞ þ b3a þ B3

a ¼ r€v3a,

T3
a;a þ ð

ffiffiffi
7
p

p0 þ
ffiffiffiffiffi
35
p

p2Þ � ð
ffiffiffi
7
p

T̂
0

3 þ
ffiffiffiffiffi
35
p

T̂
2

3Þ þ b3
3 þ B3

3 ¼ r €w3;

ð52Þ
M̂
a

ab ¼ 2mea
ab; Ta

a ¼ 2mea
a3; T̂

a

3 ¼ 2mêa
33; a ¼ 0; 1; 2; 3;

ea
ab ¼ ðv

a
a;b þ va

b;aÞ=2,

e033 ¼
ffiffiffi
3
p

w1 þ
ffiffiffi
7
p

w3; e133 ¼
ffiffiffiffiffi
15
p

w2; e233 ¼
ffiffiffiffiffi
35
p

w3; e333 ¼ 0,

2e0a3 ¼
ffiffiffi
3
p

v1a þ
ffiffiffi
7
p

v3a þ w0
;a,

2e1a3 ¼ w1
;a þ

ffiffiffiffiffi
15
p

v2; 2e2a3 ¼ w2
;a þ

ffiffiffiffiffi
35
p

w3; 2e3a3 ¼ w3
;a. ð53Þ

Thus for a given value of K, ðK þ 1Þ initial-boundary-
value problems need to be solved. One way to ascertain the
appropriate value of K and hence of the order of the plate
theory is to find the difference between solutions for two
successive values of K and terminate the solution process
when this difference is less than the acceptable tolerance.

5. Free vibrations

When studying free vibrations of a plate, we take t̄i ¼ 0
on qtO, and b ¼ 0. Thus Eqs. (27), (28) and (25) become

M̂
a

ab;b � pa
;a �DabTb

a ¼ Rab €v
b
a,

Ta
a;a þDabpb �DabT̂

b

3 ¼ Rab €w
b, (54)

va
a;a þDcawc ¼ 0.

Substitution for M̂
a

ab, T̂
a

3 and Ta
a from Eq. (30) into

Eq. (54) gives

ðCabkle
a
klÞ;b � pa

;a �DabCa3kle
b
kl ¼ Rab €v

b
a,

ðCa3kle
a
klÞ;a þDabpb �DabC33kle

b
kl ¼ Rab €w

b, (55)

va
a;a þDcawc ¼ 0.

Henceforth we assume that the plate is made of a
homogeneous and isotropic material. Furthermore, we
seek solutions of Eq. (55) of the following form:

va
aðx1; x2; tÞ ¼ eiotV a

aðx1; x2Þ,

waðx1;x2; tÞ ¼ eiotW aðx1;x2Þ, (56)

paðx1; x2; tÞ ¼ eiotPaðx1;x2Þ.

We substitute in Eq. (55) for ea
kl from Eqs. (15) and (16),

then for va
a, wa and pa from Eq. (56), and obtain the

following system of homogeneous partial differential
equations in Va

a, W a and Pa.

mðVa
a;bb þ V a

b;abÞ � Pa
;a �DabmðDcbV c

a þW b
;aÞ ¼ �ro

2Va
a,

mðDcaVc
a;a þW a

;aaÞ þDabPb � 2DabmDcbW c ¼ �ro2W a,

Va
a;a þDcaW c ¼ 0. (57)

Eqs. (57)define an eigenvalue problem for the determina-
tion of the frequency o and the corresponding mode vector
Va

a, W a and Pa. These will depend upon boundary
conditions imposed at the plate edges. No initial conditions
are needed for a free vibration problem. For a ¼ 0,
1; 2; . . . ;K , Eqs. (57) under the appropriate boundary
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conditions can be solved numerically either by the finite
element method, e.g., see [23] or by a meshless method
[18–20] where plates made of compressible linear elastic
materials have been studied. Since the plate theory
proposed herein takes pressures and displacements as
unknowns, the solution of the problem by a numerical
method should not exhibit the locking phenomenon.

For K ¼ 1, Eqs. (57) give

V0
a;a þ

ffiffiffi
3
p

W 1 ¼ 0,

mðV0
a;bb þ V 0

b;abÞ � P0
;a ¼ �ro

2V 0
a,

mW 0
;aa ¼ �ro

2W 0; ð58Þ

V1
a;a ¼ 0,

mV 1
a;bb � P1

;a �
ffiffiffi
3
p

mW 0
;a � 3mV1

a ¼ �ro
2V1

a,

mW 1
;aa þ

ffiffiffi
3
p

P0 � 6mW 1 ¼ �ro2W 1. ð59Þ

For K41, one can similarly deduce equations analogous to
Eqs. (58) and (59).

5.1. Simply supported rectangular plate

For a simply supported rectangular plate whose mid-
surface occupies the region ½0; L1� � ½0; L2�, the boundary
conditions (38) can be written as

W a ¼ 0; Ma
11 ¼ 0; Ma

21 ¼ 0 on x1 ¼ 0; L1,

W a ¼ 0; M0
22 ¼ 0; Ma

12 ¼ 0 on x2 ¼ 0; L2. (60)

These are identically satisfied by the following choice for
Va

a, W a and Pa.

V a
1 ¼

X1
m;n¼0

~V
amn

1 cos
mpx1

L1
sin

npx2

L2
,

V a
2 ¼

X1
m;n¼0

~V
amn

2 sin
mpx1

L1
cos

npx2

L2
,

W a ¼
X1

m;n¼0

~W
amn

sin
mpx1

L1
sin

npx2

L2
,

Pa ¼
X1

m;n¼0

~P
amn

sin
mpx1

L1
sin

npx2

L2
, ð61Þ

where m and n are integers. As pointed out in [22] the lower
limit for m and n in Eq. (61) should be zero and not one as
has been assumed in several works. For the zeroth order
plate theory, Eqs. (61) and (58) with W 1 ¼ 0 give

o2 ¼
m
r
p2

m2

L2
1

þ
n2

L2
2

� �
,

m

L1

~V
0mn

1 þ
n

L2

~V
0mn

2 ¼ 0; ~P
0mn
¼ 0. (62)

That is, during free vibrations of a simply supported
rectangular plate the zeroth-order plate theory does not
delineate the effect of material incompressibility, and
computed frequencies are the same as those for a plate
made of a compressible material. Frequencies given by
Eq. (62) agree with those derived from Eq. (13) of Ref. [1]
with a ¼ 0, and the corresponding mode shape may or may
not approximate the analytical one since Eqs. (58)3 and
(61)3 do not require that W 0 identically vanish as is the
case for the analytical solution. We should add that for a
clamped rectangular plate, the zeroth-order plate theory
may give different frequencies for a plate made of a
compressible and an incompressible material.
For K ¼ 1, substitution from Eq. (61) into Eqs. (58) and

(59) gives the following eigenvalue problem for the
determination of the frequency o and the eigenvector (or
the mode shape) V0

a; V 1
a; W 0; W 1; P0 and P1.

m

L1

~V
0mn

1 þ
n

L2

~V
0mn

2 �
ffiffiffi
3
p

~W
1mn
¼ 0,

mp2
m2

L2
1

þ
n2

L2
2

� �
~V
0mn

1 þ
mp
L1

~P
0mn
¼ ro2 ~V

0mn

1 ,

mp2
m2

L2
1

þ
n2

L2
2

� �
~V
0mn

2 þ
np
L2

~P
0mn
¼ ro2 ~V

0mn

2 ,

mp2
m2

L2
1

þ
n2

L2
2

� �
~W
0mn
¼ ro2 ~W

0mn
,

m

L1

~V
1mn

1 þ
n

L2

~V
1mn

2

� �
¼ 0,

mp2
m2

L2
1

þ
n2

L2
2

� �
~V
1mn

1 þ
ffiffiffi
3
p

m
mp
L1

� �
~W
0mn
þ 3m ~V

1mn

1 þ
mp
L1

~P
1mn
¼ ro2 ~V

1mn

1 ,

mp2
m2

L2
1

þ
n2

L2
2

� �
~V
1mn

2 þ
ffiffiffi
3
p

m
np
L2

p2
� �

~W
0mn
þ 3m ~V

1mn

2 þ
np
L2

~P
1mn
¼ ro2 ~V

1mn

2 ,

mp2
m2

L2
1

þ
n2

L2
2

� �
~W
1mn
þ 6m ~W

1mn
�

ffiffiffi
3
p

~P
0mn
¼ ro2 ~W

1mn
. ð63Þ

For different integer values of m and n, one can solve the
eigenvalue problem (63) and find the spectrum of
frequencies and the corresponding eigenvectors.
For a given value of K one gets 4ðK þ 1Þ algebraic

equations analogous to Eqs. (63) for the 4ðK þ 1Þ
unknowns. For assigned values of m and n, these algebraic
equations can be solved for the frequencies and the
corresponding mode shapes. The following question
naturally arises: How does the solution accuracy and the
corresponding computational effort compare with the
corresponding quantities in the analysis of the 3-D problem
by the finite element method (FEM). For a plate made of a
compressible linear elastic material Batra and Aimmanee
[23] found that the seventh-order plate theory requires less
computational resources than the FE analysis of the 3-D
problem, and gives equally good results for frequencies of
flexural modes of vibration and improved results for the in-
plane modes of vibration. Recall that in the Kth-order
plate theory, displacements and the pressure are taken to
be Kth-order polynomials in z but in the FEM using
8-node brick elements they will be approximated by
piecewise linear polynomials. For K linear elements
through the plate thickness the number of unknowns and
the linear algebraic equations in the analyses of the
problem by the FEM and the plate theory equations will
be nearly the same. However, K piecewise polynomials
of degree 1 in z will not approximate well the Kth-order
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polynomial in z. Recall that in-plane motions of points of
the midsurface of the plate are expressed in polynomials of
the same degree both in the FEM and the plate-theory
equations. Note that the CPU time required to invert
ðK þ 1Þ n� n matrices is significantly less than that needed
to invert one ðK þ 1Þn� ðK þ 1Þn matrix.

Batra and Aimmanee [24] have used a higher order plate
theory and Poisson’s ratio equal to 0.49 to compute
frequencies of incompressible rectangular plates under
different types of boundary conditions.

6. Remarks

It is very likely that plates made of rubberlike materials
will experience large strains. Thus a plate theory for these
materials should incorporate both geometric and material
nonlinearities. A possibility is to divide the load into
several increments, and for each incremental load develop a
theory of infinitesimal deformations of pre-stressed shells
since an initially flat plate will be deformed into a part of a
shell by the first incremental load. Alternatively, one can
use a total Lagrangian description of motion in which case
equations for incremental deformations are always referred
to the initial configuration of the plate. Plate theory
equations will be considerably more involved than those
for infinitesimal deformations.

For a thin plate, i.e., R51, one usually assumes that the
transverse normal stress, s33, is negligible as compared to
s11 and/or s22. For an incompressible material s33 ¼ 0
implies that

pa ¼ C33kle
a
kl , (64)

which can be solved for ea
33. Consistent with the classical

thin plate theories one can set w1 ¼ w2 ¼ � � � ¼ wk ¼ 0 in
Eq. (11)2, and substitute for ea

33 from Eq. (64) into the
constitutive relation (6). Eqs. (23)–(25) with Ta

3 ¼ 0 govern
deformations of the plate.

Assuming that C3333a0, Eq. (64) can be solved for ea
33

and the result substituted in Eq. (5) to obtain

sa
ij ¼ � ~p

a þ ~Cijklðe
a
kl � ea

33dk3dl3Þ. (65)

where ~Cijkl are the modified elasticities. There is no need to
introduce the strain terms in the pressure field because like
pa, ~pa cannot be determined from the strain field.

When using the elasticity theory one solves s33 ¼ 0 for
the pressure field and substitutes for it in the governing
equations to find the deformation field. One could do so
here and substitute for pa from Eq. (64) into Eqs. (27) and
(28). However, in this case one must consider w1;w2; . . . ;wk

in Eq. (11)2.
As has been demonstrated in [2,5,18,20,23] transverse

stresses computed from this plate theory equations agree
well with those obtained from the analytical solution of
the problem. Furthermore there is no need to introduce
the shear correction factor commonly used in the Reissner-
Mindlin (or the first-order shear deformation) plate
theories.
We note that lengths have been non-dimensionalized
with respect to h=2 where h equals the plate thickness. That
is why h does not appear in Eq. ð62Þ1 and some other
equations.

7. Conclusions

We have used the principle of virtual work to derive a
compatible higher-order shear and normal deformable
theory for a plate made of an incompressible linear elastic
material. The difference between compressible and incom-
pressible materials is that only volume preserving deforma-
tions are admissible in incompressible materials, and one
needs to find the hydrostatic pressure as a part of the
solution of the pertinent initial boundary value problem.
This is reflected in the plate theory by also expanding the
hydrostatic pressure as a power series in the thickness
coordinate. Governing equations for plate theories of
different order are deduced and free vibrations of plates
are studied. It is found that frequencies of a simply
supported rectangular plate computed from the zeroth-
order plate theory agree with those found from the
analytical solution but the corresponding two mode shapes
need not match with each other.
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