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Abstract

The dynamic buckling of a thin orthotropic thermoviscoplastic plate is studied by analyzing the

stability of a stressed/deformed plate under superimposed infinitesimal perturbations. Elastic

deformations are neglected. The wavelength of the perturbation that has the maximum initial growth

rate is assumed to determine the buckled shape of the plate. The buckled shape of a rectangular plate

loaded axially on two opposite edges thus ascertained is found to match well with the experimental

findings.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The buckling of thin rectangular plates under in-plane loads has been extensively

studied, e.g. see Jones [1] for a review of the literature till 1989. The study of plastic

buckling of plates began in late 1940s with the works of Illyshin [2], Stowell [3], and

Bijlaard [4] who used the deformation theory of plasticity, and Handelman and Prager [5]

who employed the incremental theory of plasticity. Pride and Heimerl [6] conducted

buckling experiments on rectangular aluminum tubes and showed that predictions from

the deformation theory of plasticity were closer to the test values than those from the

incremental theory of plasticity. Pearson [7] showed that the assumption of no unloading
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through the entire plate thickness improved predictions from the incremental theory of

plasticity. Neale [8] showed that the buckling load was highly sensitive to imperfections.

Needleman and Tvergaard [9], on the assumptions of a small initial imperfection and the

axial stress at buckling being greater than the yield stress of the material, performed an

asymptotic analysis to compute the buckling stress. Tvergaard [10] found that the buckling

load is highly sensitive to the imposed strain rate, and the classic elastic–plastic buckling

predictions are good approximations for small initial imperfections and low strain rates.

The effective stress at buckling in an isotropic rectangular plate loaded by in-plane

tractions on two opposite edges only is greater than the yield stress of the material if

the ratio of the thickness of the plate to the distance between the loaded edges exceeds

(3(1Kn2)sy/E)1/2/p where sy, n and E are the yield stress, Poisson’s ratio and Young’s

modulus of the material, respectively [12]. For most engineering materials, this ratio

equals about 0.03 which corresponds to thin plates.

Pauley and Aboudi [11], and Simiteses and Song [12] have used Bodner–Partom’s

theory of viscoplasticity without a yield surface to analyze elasto-plastic deformations of

rectangular plates under in-plane compressive loads. Thus plastic deformations are

assumed to always occur with the plastic strain rate depending upon the level of the

effective stress. The computed buckling load depends upon the criterion used to define the

buckled state of the plate.

Approximate analytical solutions can provide useful information and generally

delineate the importance of various material and geometric parameters. Goodier [13],

and Lindberg and Florence [14] have provided analytical and experimental values of mode

shapes of a buckled plate. However, they did not explicitly state the buckling criterion

employed. For a dynamically loaded elastic rectangular plate, Batra and Geng [15,16]

assumed that the plate buckles when its transverse centroidal deflection equals three times

the thickness. Here we postulate that if infinitesimal perturbations superimposed upon a

deformed state grow in time, then the deformed state is unstable. The unstable deformed

state corresponding to the maximum growth rate of the perturbation is taken to correspond

to the buckled shape of the plate. The wavelength corresponding to the maximum growth

rate of the perturbation gives the mode shape of the buckled plate. For different loading

rates, the buckled mode shape is found to be close to that observed experimentally and also

that given by Goodier [13]. Because of the neglect of elastic deformations, the buckling

load cannot be determined.
2. Formulation of the problem

2.1. Governing equations

A schematic sketch of the problem studied and the location of the rectangular Cartesian

coordinate axes used to describe infinitesimal deformations of a thin rectangular plate are

shown in Fig. 1; the edges of the plate have lengths a and b, and its thickness equals h. It is

assumed that deformations of the plate obey the Kirchhoff–Love hypotheses, and

proportional loads N0
xx, N0

yy and N0
xy are initially applied to the lateral edges of the plate so

as to produce uniform stresses s0
xx, s0

yy and s0
xy and strain rates D0

xx, D0
yy and D0

xy. The strain



Fig. 1. Schematic sketch of thin plate.
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rate in the plate during its subsequent deformations is given by

Dxx Z D0
xx Cz _kxx; _kxx ZK

v2 _w

vx2
; _w Z

vw

vt
; Dyy Z D0

yy Cz _kyy;

_kyy ZK
v2 _w

vy2
; Dxy Z D0

xy Cz _kxy; _kxy ZK
v2 _w

vxvy
; D0

xx Z
v _u0

vx
;

D0
yy Z

v _v0

vy
; 2D0

xy Z
v _u0

vy
C

v _v0

vx
;

(1)

where u, v and w are displacements of a point in the x, y and z directions, respectively. The

transverse displacement, w, of the plate is given by

v2Mx

vx2
C2

v2Mxy

vxvy
C

v2My

vy2
C Nx

v2w

vx2
C2Nxy

v2w

vxvy
CNy

v2w

vy2

� �
Z rh

v2w

vt2
; (2)

where r is the mass density of the plate material, and

ðMx;My;MxyÞ Z

ðh=2

Kh=2
ðsxx; syy;sxyÞz dz; ðNx;Ny;NxyÞ Z

ðh=2

Kh=2
ðsxx;syy;sxyÞdz: (3)
2.2. Constitutive relations

We assume that the plate is made of a homogeneous and orthotropic material with

planes of material symmetry coincident with the coordinate planes, the material of the

plate is rigid plastic, exhibits strain hardening, strain-rate hardening and thermal softening,

the load at a material point is always increasing, and the transverse normal stress and the

transverse shear stress are negligible. Thus Hill’s [17] yield criterion may be written as

fh
3

2

ðG CHÞs2
xx K2Hsxxsyy C ðF CHÞs2

yy C2Ns2
xy

F CG CH

� �1=2

K �s Z 0; (4)

where constants F, G, H and N characterize the orthotropic material, and �s is the

equivalent yield stress of the material. For NZ3FZ3GZ3H, Eq. (4) reduces to the von

Mises yield criterion. For a material exhibiting strain hardening, strain-rate hardening and

thermal softening, �s is a function of the effective plastic strain, the effective plastic strain
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rate and the temperature. However, here we will assume that the effective plastic strain rate

at a point is essentially constant and the heat conduction effects are negligible. Thus the

incremental temperature rise, dq, at a material point is given by

dq Z b �s d �e=ðrcÞ; (5)

where c is the specific heat, b equals the fraction of the plastic working converted into

heating, and d �e is the increment in the effective plastic strain �e. For _�eZconst:, we assume

that Eq. (5) can be solved for qZqð �e; �sÞ; one relation for which Eq. (5) can be integrated is

given in Section 4. Hence the effective stress �s for locally adiabatic deformations at a

constant strain rate can be expressed as a function of �e.

We assume that the material obeys the flow rule

Dxx Z l
vf

vsxx

; Dyy Z l
vf

vsyy

; Dxy Z l
vf

vsxy

; (6)

where l is a factor of proportionality. Substituting from (4) into (6), solving the resulting

three equations for sxx, syy and sxy, defining the equivalent plastic strain rate, _�e, by

sxxDxx CsyyDyy C2sxyDxy Z �s _�e; (7)

we obtain

sxx ¼
2

3
�s= _�e

ðF þ G þ HÞ

ðFG þ GH þ HFÞ
½ðF þ HÞDxx þ HDyy�; syy

¼
2

3
�s= _�e

ðF þ G þ HÞ

ðFG þ GH þ HFÞ
½ðG þ HÞDyy þ HDxx�; sxy

¼
2

3
�s= _�e

ðF þ G þ HÞ

N
Dxy: (8)

It can be shown that

_�e Z l Z
2

3
ðAD2

xx CBD2
yy CCDxxDyy CDD2

xyÞ

� �1=2

; (9)

where

A Z
ðF CG CHÞðF CHÞ

ðFG CGH CHFÞ
; B Z

ðF CG CHÞðG CHÞ

ðFG CGH CHFÞ
;

C Z
2ðF CG CHÞH

ðFG CGH CHFÞ
; D Z

2ðF CG CHÞ

N
:

(10)
2.3. Simplification of the governing equations

Substituting from (1) into (9) and neglecting terms multiplying z2, we obtain

_�e2 Z _�e2
0 C

4

3
AD0

xx
_kxx CBD0

yy
_kyy C

C

2
ðD0

xx
_kyy CD0

yy
_kxxÞCD0

xy
_kxy

� �
z; (11)
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where _�e0 is obtained from _�e by setting Dxx ZD0
xx, etc. Since j _kxxj, j _kyyj and j _kxyj multiplied

by h= _�e0 are all much smaller than 1, therefore,

_�e Z _�e0 C
2

3
AD0

xx
_kxx CBD0

yy
_kyy C

C

2
ðD0

xx
_kyy CD0

yy
_kxxÞCD0

xy
_kxy

� �
z= _�e0: (12)

Integration of Eq. (12) with respect to time gives

�e Z �e0 C
2

3
AD0

xxkxx CBD0
yykyy C

C

2
ðD0

xxkyy CD0
yykxxÞCD0

xykxy

� �
z= _�e0: (13)

Recalling that the initial state of deformation obeys the flow rule (6), we use Eqs. (4),

(6) and (8) to substitute in Eq. (13) for D0
xx, D0

yy and D0
xy in terms of s0

xx, s0
yy and s0

xy and

arrive at the following:

�e Z �e0 C
z

�s0
ðs0

xxkxx Cs0
yykyy C2s0

xykxyÞ; (14)

where �s0 is the initial equivalent stress given by Eq. (4) with sxx, syy, etc. replaced by

initial stresses s0
xx, s0

yy. For small deformations, the relation �sZ �sð �eÞ can be approximated

by

�s Z �sj �eZ0 C
d �s

d �e �eZ0 �e Z �sj �eZ0 CEð �eÞ �e;j (15)

where Eð �eÞ is the tangent modulus; e.g. see Fig. 2. Eq. (15) is exact for a rigid plastic

linearly strain hardening material deformed at a constant strain rate and at a uniform

temperature.

Substitution from (14) into (15) gives

�s Z �s0 C
Eð �eÞz

�s0
½s0

xxkxx Cs0
yykyy C2s0

xykxy�: (16)
Fig. 2. Schematic diagram of the stress–strain curve.
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We now substitute into Eq. (8) for strain rates from Eq. (1), for _�e from Eq. (12) and for �s
from Eq. (16) to arrive at the following equations:

sxx Z s
0
xx Cz Eaðakxx Cbkyy C2gkxyÞC

1

l0

A K
3

2
a

2

� �
_kxx

��

C
C

2
K

3

2
ab

� �
_kyy K3ga _kxy

��
;

syy Z s0
yy Cz Ebðakxx Cbkyy C2gkxyÞ

�
C

1

l0

C

2
K

3

2
ba

� �
_kxx C B K

3

2
b2

� �
_kyy K3gb _kxy

� ��
;

sxy Z s0
xy Cz Egðakxx Cbkyy C2gkxyÞC

1

l0

K
3

2
gða _kxx Cb _kyyÞ

��

C
D

2
K3g2

� �
_kxy

��
; ð17Þ

where

a Z
s0

xx

�s0
; b Z

s0
yy

�s0
; g Z

s0
xy

�s0
; l0 Z 3 _�e0: (18)

Substitution from (17) into (3) and the result into (2) yield the following equation for

the transverse deflection w:

ð2A K3a2Þ
v4 _w

vx4
K12ag

v4 _w

vx3vy
C ½2C K6ab C2ðD K6g2Þ�

v4 _w

vx2vy2

K3bg½D C2�
v4 _w

vxvy3
C ½2B K3b2�

v4 _w

vy4
C2Eð �eÞl0 a2 v4w

vx4
C4ag

v4w

vx3vy

�

C2ðab C2g2Þ
v4w

vx2vy2
C4bg

v4w

vxvy3
Cb2 v4w

vy4

�
K s0

xx

v2w

vx2
C2s0

xy

v2w

vxvy

�

Cs0
yy

v2w

vy2

�
24l0

h2
C

24l0

h2
r €w Z 0: ð19Þ

When the initial shear stress s0
xy vanishes, then gZ0 from third of Eq. (18) and Eq. (19)

is reduced to

Q1

v4 _w

vx4
CQ2

v4 _w

vx2vy2
CQ3

v4 _w

vy4

� �
C2Eð �eÞl0 a2 v4w

vx4
C2ab

v4w

vx2vy2
Cb2 v4w

vy4

� �

K
24l0

h2
s0

xx

v2w

vx2
Cs0

yy

v2w

vy2

� �
C

24l0

h2
r €w Z 0; ð20Þ

where

Q1 Z 2A K3a2; Q2 Z 2ðC K3ab CDÞ; Q3 Z 2B K3b2: (21)

The first group of terms involving _w represents the directional moment resistance, the

second group of terms multiplying Eð �eÞ and containing fourth order partial derivatives of

w with respect to the spatial coordinates represents the effect of strain hardening, the third
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group of terms containing s0
xx and s0

yy represents the axial thrust causing buckling, and the

fourth term accounts for the resistance to buckling offered by inertia forces. Henceforth we

assume that the initial shear stress s0
xy vanishes.

3. Buckling deformations

In order to find the buckling load we perturb the deformed state of the plate by

an infinitesimal amount. If the superimposed perturbations grow in time, then the

ground state is unstable. The buckled shape of the plate corresponds to the

wavelength of the perturbation that results in the maximum initial growth rate of

the perturbation.

Let w0(x, y)Zw(x, y, t0) give the deflection of the plate at time tZt0, and it be given an

infinitesimal perturbation dw(x, y, t) where supjdw=w0j/1 and supjd _w= _w0j/1. We

assume that the resultant forces and moments of forces are unaffected by the superimposed

perturbation. Also, the perturbation field satisfies the following boundary conditions at the

edges of the simply supported plate:

dwð0; y; tÞ Z dwða; y; tÞ Z 0; dwðx; 0; tÞ Z dwðx; b; tÞ Z 0;
v2dw

vx2 ð0;y;tÞ Z 0;
		

v2dw

vx2 ða;y;tÞ Z 0;
v2dw

vy2 ðx;0;tÞ Z 0;
v2dw

vy2 ðx;b;tÞ Z 0: ð22Þ
						

				
The perturbation field

dwðx; y; tÞ Z dw�ehðtKt0Þ sin u1x sin u2y; u1 Z
2pn

a
; u2 Z

2pm

b
; (23)

where m and n are integers, satisfies boundary conditions (22). Note that any spatial

variation of a perturbation field can be expressed as the sum of a double Fourier series;

thus it suffices to consider perturbations of the form (23). In Eq. (23), h is the initial growth

rate of the perturbation at time tZt0. A positive value of h implies that the deformed plate

at time t0 is unstable; otherwise it is stable. Substituting wZw0Cdw into Eq. (20) and

subtracting (20) from the resulting equation, we get the following algebraic equation

relating wavenumbers u1 and u2 to the growth rate h.

24l0

h2
rh2 C ðQ1u4

1 CQ2u2
1u2

2 CQ3u4
2Þh C2Eð �eÞl0ða

2u4
1 C2abu2

1u2
2 Cb2u4

2Þ

C
24l0

h2
ðs0

xxu2
1 Cs0

yyu2
2Þ Z 0: ð24Þ

We now consider extreme values of the wavenumbers. We note that

u1 Z u2 Z 00h Z 0; u1 Z u2 ZN0h ZK
2Eð �eÞl0ða

2 C2ab Cb2Þ

Q1 CQ2 CQ3

!0;

u1 Z 0; u2 ZN0h ZK
2Eð �eÞl0b2

Q3

!0; u1 ZN;

u2 Z 00h ZK
2Eð �eÞl0a2

Q1

!0: ð25Þ
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Thus for extreme values of wavenumbers of the perturbation, the deformed

configuration of the plate is stable. However, for some finite nonzero values of u1 and

u2, the growth rate h of the perturbation may be positive. Values of u1 and u2 that result in

the extremum values of h are solutions of the following two equations.

vh

vu1

Z 00hð2Q1u2
1 CQ2u2

2ÞC2Eð �eÞl0ð2u2
1a2 C2abu2

2ÞC
24l0

h2
s0

xx Z 0;

vh

vu2

Z 00hðQ2u2
1 C2Q3u2

2ÞC2Eð �eÞl0ð2abu2
1 C2b2u2

2ÞC
24l0

h2
s0

yy Z 0:

(26)

Eqs. (24) and (26) comprise three equations for the determination of u1, u2 and h. An

analytical solution of these equations, if it can be obtained with Mathematica, may not

shed much light on the relative importance of various variables in determining the buckled

shape of the plate. Accordingly, we consider the simpler case of a plate loaded only on two

opposite edges.
3.1. Uniaxial impact load

Let the plate be compressed in the x-direction by applying uniformly distributed loads

on the edges xZ0 and xZa, and the initial stress be given by

s0
xx ZK

2

3

F CG CH

G CH

� �1=2

s0; s0O0; s0
yy Z s0

xy Z 0: (27)

Therefore, from Eqs. (4) and (18),

a ZK
2

3

F CG CH

G CH

� �1=2

; b Z 0; g Z 0: (28)

The initial strain rates are given by

D0
xx Z

1

a
_�e0; D0

yy Z
3H2

2ðF CG CHÞðG CHÞ

� �1=2

_�e0; D0
xy Z 0; _�e0O0: (29)

The problem can be further simplified if we assume that buckling deformations are

independent of the y-coordinate. Experimental work of Goodier [13] supports this

assumption. Eq. (24) then simplifies to

24l0

h2
rh2 CQ1u4

1h C2Eð �eÞl0a2u4
1 C

24l0a

h2
s0u2

1 Z 0: (30)

The equation vh/vu1Z0 gives

u2
1 ZK

as2
0

2ðQ1h C2Eð �eÞl0a2Þ

24l0

h2
or h ZK

24l0a

h2 s0 C4Eð �eÞa2l0u2
1

2Q1u2
1

: (31)
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Substitution for u2
1 from (31) into (30) gives

rh2 Z
a2s2

0

4ðQ1h C2Eð �eÞl0a2Þ

h2l0

24
: (32)

We set F1Zrh2, and

F2 Z
a2s2

0

4ðQ1h C2Eð �eÞl0a2Þ

h2l0

24
:

The fourth of Eq. (18) implies that l0O0. For Q1O0, F1 and F2 are schematically

plotted against h in Fig. 3. The point of intersection of the two curves gives a

solution of Eq. (32). For Q1O0, hO0 is a solution of Eq. (32), and the initial

deformed state becomes unstable as soon as the material starts deforming plastically.

This is because elastic deformations have been neglected. We now attempt to find the

buckled shape.

In terms of nondimensional variables

�h Z h= _�e0; �u Z Lu1; (33)

where L is a characteristic length, Eqs. (30) and (31) yield

�h3 Ca1 �h
2 Kc1 Z 0; or �u3 Ca2 �u

2 Kc2 Z 0; (34)

where

a1 ¼
ðR þ 1ÞEð �eÞ

R2 �s0

; c1 ¼
3 �s0ð2R þ 1Þ

rR2 _�e2
0h2

; (35)

a2 Z

ffiffiffi
2

p
ð2R C1ÞLEð �eÞ _�e0ffiffiffiffiffiffiffi
Ka

p
R2 �s0

ffiffiffiffiffiffiffiffiffi
�s0=r

p ; c2 Z
9

ffiffiffi
2

p
ð2R C1Þ

ffiffiffiffiffiffiffi
Ka

p
ðR C1Þ

R2ðR C2Þh2

L3 _�effiffiffiffiffiffiffiffiffi
�s0=r

p ;

R Z
H

F
Z

H

G
:

(36)

A real solution of the first of cubic Eq. (34) is
Fig. 3. Schematic plots of functions F1 and F2 defined immediately after Eq. (32).
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�hZ _�e0 K
q1

2
C

p1

3

� �3

C
q1

2

� �2
� �1=2� �1=3

C K
q1

2
K

p1

3

� �3

C
q1

2

� �2
� �1=2

K
a1

3

� �" #
;

(37)

where

p1 ZKa2
1=3; q1 Z 2ða1=3Þ

3 Kc1: (38)

A real solution of the second of cubic Eq. (34) for the dimensional wavenumber �uZ �u1

is

�uZ K
q2

2
C

p2

3

� �3
C

q2

2

� �2
� �1=2� �1=3

C K
q2

2
K

p2

3

� �3
C

q2

2

� �2
� �1=2

K
a2

3

� �" #
=L;

(39)

where

p2 ZKa2
2=3; q2 Z 2

a2

3

� �3

Kc2: (40)

For most materials, the order of magnitude of different material parameters is

rw103 kg=m3; Rw1; �s0 w102 to 103 MPa;

_�e0 w10 to 103=s; Eð �eÞ= �s0 w1; hw1 mm; a1 w10K1; a2 w10K3:

(41)

For a1/1 and a2/1, one can expand solutions of the first of Eq. (34) and the second

part of Eq. (34) as power series in a1 and a2. That is,

�h Z �h0 Ca1 �h1 COða2
1Þ; �u Z �u0 Ca2 �u1 COða2

2Þ: (42)

Substitution from (42) into (34), equating all terms with different orders of small

parameters, and converting the solution to dimensional variables, we get

h Z
3 �s0ð2RC1Þ_�e0

rR2h2

� �1=3

K
ð2RC1ÞEð�eÞ_�e0

3R2 �s0

" #
;

u Z
9

ffiffiffiffiffiffiffiffiffiffi
K2a

p
ð2RC1ÞðRC1Þ_�e0

R2ðRC2Þ
ffiffiffiffiffiffiffiffiffi
�s0=r

p
h2

� �1=3

K

ffiffiffi
2

p
ð2RC1ÞEð�eÞ_�e0ffiffiffiffiffiffiffiffi

Ka
p

ð3R2 �s0Þ
ffiffiffiffiffiffiffiffiffi
�s0=r

p :

(43)

For an isotropic material, RZ1, aZK1, and Eq. (43) simplifies to

h Z
9 �s0

_�e0

rh2

� �1=3

K
Eð �eÞ _�e0

�s0

" #
; u Z

18
ffiffiffi
2

p
_�e0ffiffiffiffiffiffiffiffiffi

�s0=r
p

h2

� �1=3

K

ffiffiffi
2

p
Eð �eÞ _�e0

�s0

ffiffiffiffiffiffiffiffiffi
�s0=r

p : (44)
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For an isotropic perfectly plastic material,

h Z
9 �s0

_�e0

rh2

� �1=3

; u Z
18

ffiffiffi
2

p
_�e0ffiffiffiffiffiffiffiffiffi

�s0=r
p

h2

� �1=3

: (45)

Eq. (43) implies that the strain hardening of the material decreases the maximum

growth rate and the associated wavenumber of perturbations. The magnitude of the first

term in the first of Eq. (43) is very large as compared to that of the second term. Had we

kept second-order terms in (42), then h would have always come out to be positive as for

the solution of Eq. (32). The second of Eq. (43) exhibits the dependence of the buckled

shape of the plate upon the applied effective strain rate, the effective stress at yield, the

mass density, the plate thickness and the strain hardening modulus. The wavenumber of

the buckled shape varies as hK2/3 signifying that a thin plate will have less wigly buckled

shape than a thick plate.

The integer closest to au/p determines the buckled shape of the plate.
4. Results and discussion

For an isotropic strain-hardening material, we have compared in Table 1 the buckled

mode shape computed from the second of Eq. (43) with the experimental values and

also with those computed by Goodier [13] using a modal method. It is clear that

buckled shapes computed from the present analysis are close to those observed

experimentally, and also to those given by Goodier [13]. For a perfectly plastic

isotropic or orthotropic material, h and u vary as ð _�e0Þ
1=3. Thus h/0 and u/0 as

_�e0/0. That is, even a perturbation of very small wavenumber will destabilize a simply

supported isotropic perfectly plastic plate deformed quasistatically. This is because

elastic deformations have been neglected. Eqs. (43) and (45) reveal that the

wavenumber of the destabilizing perturbation decreases with an increase in �s0 and h,

and its growth rate increases with an increase in �s0 and a decrease in h. For a strain

hardening material, the first of Eqs. (43) and (44) at first glance suggest that h may not

be positive. However, the magnitude of the first term is much larger than that of the

second term, and h is always positive.

Results presented in Figs. 4–6 are for the SAC-1 plate of Table 1. For different values of

the applied axial strain rate, Fig. 4 compares the maximum growth rate of the perturbation

and the corresponding wavenumber as computed from the exact solutions (37) and (39)

and the asymptotic solution (43). The growth rates computed from the exact and the

asymptotic solutions agree with each other. The exact and the asymptotic solutions for the

wavenumber agree qualitatively, and the difference between the two increases with an

increase in the applied axial strain rate. For a strain rate of 2000/s, the difference between

the two wavenumbers equals 2%. For each solution, the maximum growth rate and the

corresponding wavenumber increase with an increase in the strain rate. Results plotted

in Fig. 5 reveal that the maximum growth rate of the perturbation decreases by 16% for an

8-fold increase in the value of the hardening modulus; the corresponding wavenumber

decreases by only 5%.



Table 1

Comparison of computed and observed number of half waves during buckling of a simply supported rectangular plate; experimental data from [13]

Specimen Width b

(cm)

Thickness

(cm)

Yield stress

(MPa)

Hardening

modulus

(GPa)

Axial

velocity

(m/s)

Strain rate

(1/s)

Shortening

(%)

Mode

(exp. [13])

Mode

(Goodier)

[13]

Mode

(present

model)

SAC-1 1.27 0.159 207 333 122 961 36 16 14 13

SAC-2 1.27 0.159 207 333 91 717 23 19 14 12

SAC-3 1.27 0.159 207 333 61 480 10 19 14 10

SAC-4 1.27 0.318 207 333 176 1386 29 13 14 9

LAC-1 1.91 0.159 198 404 56 441 7 13 9 10

LAC-2 1.91 0.159 207 333 94 756 16 12 9 12

LAC-3 1.91 0.159 207 333 105 827 30 14 9 12

LAC-4 1.91 0.318 207 333 115 906 15 14 9 8

LAC-5 1.91 0.318 207 333 140 1102 20 10 9 8

4CSC-1 1.91 0.159 177 839 35 276 3 10 8 9

4CSC-2 1.91 0.159 177 839 30 236 3 10 7 8

4CSC-3 1.91 0.159 177 1792 18 142 1 8 6 7

All plates of length aZ12.7 cm.
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Fig. 4. The dependence upon the axial strain rate of the maximum initial growth rate and the corresponding

number of half-wavelengths along the plate length as found from the exact and the asymptotic solutions.

Fig. 5. The dependence upon the hardening modulus of the maximum initial growth rate and the corresponding

number of half-wavelengths along the plate length as found from the exact and the asymptotic solutions.

Fig. 6. The dependence of the maximum initial growth rate and the corresponding number of half-wavelengths

along the plate length upon the factor, R, of normal anisotropy.
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Fig. 6 exhibits the effect of the normal anisotropy parameter, R, upon the maximum

growth rate and the corresponding wavenumber of the perturbations. The wavenumber of

the buckled plate decreases monotonically and exponentially with an increase in the value

of R. Thus the buckled shape of a highly anisotropic plate will differ significantly from that

of an isotropic plate.

In order to compute results for an isotropic thermoviscoplastic plate we assume that the

material obeys the following relation among the effective stress �s, the effective plastic

strain �e, the effective plastic strain rate _�e, and the temperature q; e.g. see [18] where it is

referred to as the Litonski–Batra thermoviscoplastic relation.

�s Z ŝ0 1 C
�e

ey

� �n

ð1 Cb _�eÞm
q Kqr

qm Kqr

� �
: (45)

Substitution from (46) into (5) and integrating the resulting equation, we get

q Kqm Z ðqm KqrÞexp
bŝ0eyð1 Cb _�eÞm

rcðqm KqrÞð1 CnÞ
1 C

�e

ey

� �nC1

K1

� �� �
: (46)

Values assigned to material parameters ŝ0, ey, b, n, m and qm are listed in Table 2; in

Eq. (46) qr is the room temperature.

We now delineate the effect of material parameters in the thermoviscoplastic relation

(46) on the maximum growth rate of perturbations and the corresponding wavenumber.

We set bZ1 thereby assuming that all the plastic working is converted into heating. The

material of the plate is isotropic, and values of material and geometric parameters, except

for the parameter being varied, are listed in Table 2. The strain hardening modulus

Eð �eÞZd �s=d �e can be computed from Eqs. (46) and (47) by using

Eð �eÞ Z
v �s

v �e
C

v �s

vq

dq

d �e
:

Figs. 7–10 exhibit the influence upon the maximum initial growth rate and the

corresponding wavenumber of the applied strain rate, the plate thickness, strain rate

hardening exponent and the strain hardening exponent. Results have been computed by

using the analytical solutions (37) and (39). The wavenumber increases monotonically

with an increase in the applied strain rate but decreases with an increase in

the plate thickness, strain-rate hardening exponent and the strain hardening exponent.

Thus the wavelength of the buckled plate will increase with an increase in the plate
Table 2

Values of material parameters

Material ŝ0

(MPa)

n m r

(kg/

m3)

c

(J/

kg K)

ey b _�e0

ð1=sÞ

qm

(K)

qr

(K)

b

(1/s)

h

(m)

HY-100

Steel

207 0.107 0.0117 7860 473 0.007 0.9 100 1500 300 17320 0.0025



Fig. 7. The dependence of the maximum initial growth rate and the corresponding number of half-wavelengths

along the plate length upon the initial axial strain rate.

Fig. 8. The dependence of the maximum initial growth rate and the corresponding number of half-wavelengths

along the plate length upon the plate thickness.
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thickness. For a 10-fold increase in the strain-rate from 200/s to 2000/s, the wavenumber

increases by a factor of 2. A 10-fold increase in the plate thickness from 1 to 10 mm, the

wavenumber of the buckled plate decreases by a factor of 4.5. However, a 10-fold increase

in the strain-rate hardening exponent from 0.0117 to 0.117, and in strain hardening
Fig. 9. The dependence of the maximum initial growth rate and the corresponding number of half-wavelengths

along the plate length upon the strain rate hardening exponent, m.



Fig. 10. The dependence of the maximum initial growth rate and corresponding number of half-wavelengths

along the plate length upon the strain hardening exponent, n.
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exponent from 0.107 to 1.07 increase wavenumbers by a factor of about 1.25 and 1.5,

respectively. Thus the imposed axial strain-rate and the plate thickness influence strongly

the wavelength of the buckled plate.

The approach followed here to study the stability of a prestressed thin plate is similar to

that used by Bai [19] and others [20,21] for analyzing the stability of homogeneous simple

shearing deformations of a thermoviscoplastic plate. In these studies a shear band is

assumed to initiate as soon as an infinitesimal perturbation of a deformed state begins to

grow. Batra and Chen [22] have shown numerically that the deformed state becomes

unstable when the tangent modulus equals zero. In the present work, the tangent modulus

equals zero for a perfectly plastic material and is a positive constant for a linearly strain

hardening material. Thus the initial growth rate of perturbations for a rigid perfectly plastic

plate is always positive, and is positive even for a strain-hardening rigid plastic material

with realistic values of the hardening modulus. In the shear band problem [20,21,23] the

wavelength corresponding to the maximum growth rate of initial perturbations determines

the spacing between adjacent bands; here it determines the buckled shape of the plate. In

[19–21], perturbations were not required to vanish wherever essential boundary conditions

are given. In the present work, they vanish at points where essential boundary conditions

are prescribed. Because of the thin plate theory used here, the possibility of instability

induced by in-plane deformations has been eliminated. Hence, the onset of instability

cannot correspond to the initiation of a shear band. We note that the present approach gives

the correct buckling load for an elastic plate [24].
5. Conclusions

We have postulated that the wavelength of the infinitesimal perturbation superimposed

upon an initially stressed plate corresponding to the maximum initial growth rate of

the perturbation determines the buckled shape of the plate. The computed buckled shape is

found to match well with that observed experimentally. For an orthotropic rectangular

plate axially compressed on two opposite edges, the normal anisotropy strongly influences
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the buckling mode. Both for isotropic and orthotropic plates, the wavenumber of the

buckled plate increases with an increase in the applied axial strain-rate and a decrease in

the plate thickness.
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