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Abstract

Buckling of a simply supported three-layer circular cylindrical shell under axial compressive load is studied. The inner and outer layers

of the shell are comprised of the same homogeneous and isotropic material, and the middle layer is made of an isotropic functionally

graded (FG) material whose Young’s modulus varies either affinely or parabolically in the thickness direction from its value for the

material of the inner layer to that of the outer layer. The solution is expressed in terms of trigonometric functions that identically satisfy

displacement type boundary conditions at the edges. Buckling loads for different values of the geometric parameters and the variation in

material parameters of the middle layer are computed. Numerical results show that buckling modes are symmetric in the circumferential

coordinate, and the buckling load decreases with an increase in the radius to thickness ratio, and increases with an increase in the average

value of Young’s modulus of the middle layer. The increase in the length to radius ratio has no effect on the buckling load, and it

increases the axial wave number of the buckled shapes.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Circular cylindrical shells are widely used in many
engineering fields such as aerospace, chemical, civil,
mechanical, naval, and nuclear. A predominant mode of
failure of axially compressed thin cylindrical shells is axial
buckling, and the problem has been studied for more than
a century [1–12]. von Karman and Tsien [4] have derived
an expression for the buckling load and have also analyzed
the post-buckling equilibrium path of an axially com-
pressed thin homogeneous cylindrical shell. They showed
that during the post-buckled stage, the load sustained by
the shell drops with an increase in its deflection.
Winterstetter and Schmidt [5] have conducted a compre-
hensive experimental and numerical investigation of the
buckling of a steel cylindrical shell under combined
loading. Kim and Kim [6] used the commercial finite
element code ABAQUS to analyze the effect of geometric
e front matter r 2006 Elsevier Ltd. All rights reserved.
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imperfections on the buckling of axially compressed
cylindrical shells and tanks. Pinna and Ronalds [7] have
studied numerically the buckling and post-buckling of
cylindrical shells with one end pinned and the other free,
and computed the collapse and bifurcation loads. Eslami
[9,10] employed the Wan-Donnell and Koiter shell theories
to investigate buckling deformations of isotropic and
orthotropic laminated cylindrical shells subjected to
mechanical and thermal loads. Shen [11,12] used the
perturbation method to analyze the thermal post-buckling
of axially loaded and pressure-loaded cylindrical shells
made of functionally graded (FG) materials.
Weaver [13] has pointed out that an axially compressed

cylindrical shell can fail either by global buckling with a
wavelength related to its length, or by local buckling with a
wavelength related to the shell thickness, or by the yielding
of the material of the shell. Furthermore, the axial buckling
loads of thin-walled cylindrical shells are highly sensitive to
nonuniformities in the wall thickness [14,15].
The motivation for the present work is provided by

our interest in analyzing buckling of multi-walled carbon
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Fig. 1. Schematic sketch of the problem studied, and the location of

coordinate axes.
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nanotubes (CNT) where van der Waals forces among
atoms on two adjacent walls of the tube tend to resist
buckling of the tubes. These forces act normal to the walls
and depend upon the distance between them. While
studying the buckling of a double-walled CNT Ru [8]
simulated van der Walls forces by presuming that a
pressure acts on the outer surface of the inner wall and
the inner surface of the outer wall and its magnitude is
inversely proportional to the distance between the two
walls. Each wall of the CNT was replaced by a cylindrical
tube comprised of an isotropic homogeneous and linear
elastic material. Ru [8] used the classical shell theory to
study buckling of a simply supported double-walled CNT
under axial loads. Sears and Batra [16] also replaced each
CNT by an equivalent continuum cylindrical tube, derived
an expression for the van der Walls force, explored
different methods of simulating van der Waals forces and
used molecular mechanics simulations, Euler’s buckling
theory, and the finite element method to study buckling of
a double-walled CNT. They found that a multi-walled tube
(MWNT) of large aspect ratio (length/diameter) and
clamped at the top and the bottom surfaces buckles as a
column with the axial strain at buckling given reasonably
well by the Euler buckling theory applied to the equivalent
continuum structure. However, a MWNT of low-aspect
ratio buckled in shell wall buckling mode with the axial
strain at buckling equaling that of one of its constituent
single-walled CNTs.

Here, we use Flügge’s shell theory to study deformations
of a simply supported thin circular cylindrical shell with the
inner and the outer layers made of a homogenous and
isotropic linear elastic material and the middle layer
comprised of an inhomogeneous isotropic Hookean
material with Young’s modulus varying continuously in
the thickness direction from that of the material of the
inner layer to that of the material of the outer layer.
Poisson’s ratio of the material of the middle layer is taken
to be constant. By assuming the solution of equilibrium
equations in the form of trigonometric series that exactly
satisfy the boundary conditions, an algebraic equation is
derived for the axial buckling load of the shell. The effect of
various material and geometric parameters on the axial
buckling load is computed. Because of the assumption of
the shell being thin, the analysis applies to a MWNT only
when its thickness/radius is very small and length/radius
very large.

2. Formulation of the problem

2.1. Governing equations

We consider a simply supported three-layered circular
cylindrical shell of length l, wall thickness h, and
undeformed mid-surface radius R as shown in Fig. 1.
Assume that materials of the inner and the outer layers is
isotropic, homogeneous, and Hookean, and that of the
middle layer is isotropic, inhomogeneous and Hookean
with Young’s modulus varying continuously in the thick-
ness direction from Young’s modulus of the material of the
inner layer to that of the material of the outer layer. Thus,
Young’s modulus is continuous across interfaces between
the middle layer and the inner and the outer layers.
Thicknesses of the inner, middle and outer layers are t1, t2
and t3, respectively, and h ¼ t1+t2+t3. For t1 ¼ t3 ¼ 0, the
shell is made of a FG material, and for t2 ¼ 0, it is made of
a homogeneous material.
As shown in Fig. 1, we use cylindrical coordinates with

the origin located at the mid-surface of the cylinder, and
coordinates x, y and z in the axial, the circumferential
and the thickness directions, respectively. The top and
the bottom surfaces of the cylinder are subjected to a
uniformly distributed axial compressive load P. We use the
classical shell theory [1–3] and hence the following
kinematic relations:

U ¼ u�
zw0

R
; V ¼

ðRþ zÞv

R
�

zwd

R
; W ¼ w, (1)

where u(x,y), v(x,y) and w(x,y) are, respectively, the axial,
the circumferential and the radial displacements of a point
on the mid-surface, U, V and W are the corresponding
displacements of a point (x,y,z) of the shell, ( )0 ¼ Rq/qx,
and ð Þd ¼ q=qy. Here we have tacitly assumed that the
displacement W does not depend upon z.
The normal and the shear strains at a point of the shell

are given by [2]

�x ¼
U 0

R
; �y ¼

Vd þW

Rþ z
; gxy ¼

V 0

R
þ

Ud

Rþ z
. (2)

Substitution from Eq. (1) into Eq. (2) yields

�x ¼
u0

R
�

z

R2
w00, (3a)

�y ¼
vd

R
�

z

R

wdd

Rþ z
þ

w

Rþ z
, (3b)
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gxy ¼
ud

Rþ z
þ

Rþ z

R2
v0 �

z

R
þ

z

Rþ z

� �
w0d

R
. (3c)

2.2. Constitutive equations

For an isotropic linear elastic material, we have the
following constitutive relations:

sx ¼
E

1� n2
ð�x þ n�yÞ, (4a)

sy ¼
E

1� n2
ð�y þ n�xÞ, (4b)

txy ¼
E

2ð1þ nÞ
gxy, (4c)

where sx, sy and txy are, respectively, the axial, circumfer-
ential and shear stresses in the x�y plane; E is Young’s
modulus, and n the Poisson ratio, with equal constants E1

and n1 for the inner and the outer layers. For the middle
layer, we assume that Poisson’s ratio is a constant, and
either

E2ðzÞ ¼ E1ðk þ 2ð1� kÞjzj=t2Þ; �t2=2ozot2=2 (5)

or

E2ðzÞ ¼ E1 k þ 4ð1� kÞðz=t2Þ
2

� �
; �t2=2ozot2=2, (6)

where k ¼ E0/E1, E0 ¼ E2(0). Functions (5) and (6) are
plotted in Fig. 2.
2.3. Equilibrium equations and boundary conditions

Forces and moments at a point on the mid-surface of the
shell are related to stresses within the shell as follows:
z

E(z)

E1

E0

E1

t2/2 t3t2/2t1

o

z

E1

E0

E1

t2/2 t3t2/2t1

o

E(z)

c d

a b

Fig. 2. Variation in the thickness direction of Young’s modulus, E, of the mid

variation, k41; (d) parabolic variation, ko1.
ðNx;NxyÞ ¼

Z h=2

�h=2
ðsx; txyÞð1þ z=RÞ dz, (7a)

ðMx;MxyÞ ¼

Z h=2

�h=2
ðzsx; ztxyÞð1þ z=RÞ dz, (7b)

ðNy;NyxÞ ¼

Z h=2

�h=2
ðsy; tyxÞ dz, (7c)

ðMy;MyxÞ ¼

Z h=2

�h=2
ðzsy; ztyxÞ dz. (7d)

Substitution from Eqs. (3) and (4) into Eq. (7) yields

fNg

fMg

 !
¼
½A� ½B�

½C� ½D�

" #
fdmg

fdtg

 !
, (8)

where

fNg ¼ fNx;Ny;Nxy;Nyxg
T; fMg ¼ fMx;My;Mxy;Myxg

T,

fdmg ¼ fu
0; vd; ud; v0gT; fdtg ¼ fw

00;wdd;w0d;wgT,

{N} is the vector of membrane forces, and {M} the vector
of resultant moments. The vector {dm} is related to
deformations of a point on the mid-surface, {dt} the vector
of the transverse deformations of the shell, [A] the
extensional rigidity matrix, [B] and [C] the bending–stretch-
ing and the stretching–bending coupling rigidity matrices,
respectively, and [D] is the matrix of bending rigidity.
Definitions of components of these matrices and analytical
expressions of their non-zero elements that involve material
and geometric parameters are given in Appendix A.
Equations governing static deformations of a cylindrical

shell (e.g., see [2]) are:

RN 0x þ RNd
yx � Pu00 ¼ 0, (10)
z

E(z)

E1
E0

E1

t2/2 t3t2/2t1

o

z

E(z)

E1

E0

E1

t2/2 t2t2/2t1

o

dle layer: (a) affine variation, k41; (b) affine variation, ko1; (c) parabolic
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RNd
y þ RN 0xy þMd

y þM 0
xy � Pv00 ¼ 0, (11)

M 00
x þM 0d

xy þM 0d
yx þMdd

y � RNy � Pw00 ¼ 0. (12)

Substitution from Eq. (8) into Eqs. (10)–(12) gives the
following three partial differential equations for the
determination of the mid-surface displacements u, v and w:

A11u00 þ A43udd þ A�12v0
d
þ B11w000

þ B�12w0
dd
þ B14w0 � Pu00=R ¼ 0, ð13Þ

A�34v00 þ A�22vdd þ A�21u0
d
þ B�22wddd

þ B�21w00
d
þ B�24wd � Pv00=R ¼ 0, ð14Þ

D11w0000 þD�12w00
dd
þD22wdddd þ ðD�14 � PÞw00

þD�24wdd � RB24w

þ C11u000 þ C�21u0
dd
þ C�12v00

d
þ C22vddd

� RA21u0 � RA22vd ¼ 0. ð15Þ

Expressions for parameters with the superscript star are
given in Appendix B.

Boundary conditions for simply supported end surfaces
of the cylindrical shell are:

A11u0 þ A12vd þ B11w00 þ B12wdd ¼ 0 at x ¼ 0; l, (16)

C11u0 þ C12vd þD11w00 þD12wdd ¼ 0 at x ¼ 0; l. (17)
3. Solution for bucking modes and loads

In view of boundary conditions (16) and (17), we
consider solutions of Eqs. (13)–(15) of the form

u ¼ X 1 cos ðmyÞ cos ðlnx=RÞ,

v ¼ X 2 sin ðmyÞ sin ðlnx=RÞ,

w ¼ X 3 cos ðmyÞ sin ðlnx=RÞ, ð18Þ

that identically satisfy the boundary conditions for
ln ¼ npR/l with m and n being integers. In Eq. (18)
unknown constants Xi (i ¼ 1,2,3) represent amplitudes of a
buckled mode shape. We substitute from Eq. (18) into
equilibrium Eqs. (13)–(15), note that the trigonometric
functions drop out, and arrive at the following algebraic
equations:

ða11 � pÞX 1 þ a12X 2 þ a13X 3 ¼ 0, (19)

a21X 1 þ ða22 � pÞX 2 þ a23X 3 ¼ 0, (20)

a31X 1 þ a32X 2 þ ða33 � pÞX 3 ¼ 0, (21)

where p ¼ P/C with C ¼ E1h=ð1� n21Þ is a non-dimensional
load parameter, and aij (i,j ¼ 1,2,3) are dimensionless
coefficients associated with the shell geometry and its
material parameters. Henceforth, we assume that the inner
and the outer layers have the same thickness, i.e., t1 ¼ t3,
and have listed in Appendix C analytical expressions for aij.
The necessary and sufficient condition for the system of
homogeneous Eqs. (19)–(21) to have a non-trivial solution
for the amplitude Xi is that the determinant of the matrix of
their coefficients must vanish. That is

a11 � p a12 a13

a21 a22 � p a23

a31 a32 a33 � p

�������
������� ¼ 0. (22)

The minimum root of Eq. (22) equals the non-dimen-
sional buckling load p, and the corresponding buckling
mode can then be computed from any two of the three
Eqs. (19)–(21).

4. Numerical results

We use Newton’s iteration method to find a root of
Eq. (22). From expressions of coefficients aij given in
Appendix C, we deduce that the root of Eq. (22) depends
not only on the shell geometry and material parameters but
also on wave numbers m and n that give the deformed
shape of the shell in the circumferential and the axial
directions, respectively. The pair m and n corresponding to
the smallest root of Eq. (22) is determined by an iterative
method.

4.1. Verification of the numerical scheme

We first consider a circular cylindrical shell made of a
homogeneous material (i.e., k ¼ 1). The non-dimensional
buckling stress, scr/E, as a function of the geometrical
parameter, d ¼ R/h, radius-to-thickness ratio, is given
by [1–4,6]

scr
E
¼

1

d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� n2Þ

p . (23)

The non-dimensional axial buckling stresses for different
values of d and length/radius as computed from Eq. (22)
with m ¼ 0 are compared with those obtained from
Eq. (23) in Table 1. It is clear that for a given value of d,

the computed axial buckling stress is independent of l/R,
and it equals that derived from Eq. (23). Furthermore,
the buckling mode is axially symmetric (i.e., m ¼ 0), and
the axial wave number, n, increases with an increase in d
and l/R.

4.2. Results for a functionally graded cylinder

For m ¼ 0,1,2,3,4, and 5, and E given by Eq. (5) or (6),
Fig. 3(a) exhibits the variation of the minimum root of
Eq. (22) with ln; values of other parameters are listed in the
caption of Fig. 3. It is evident that the minimum root of
Eq. (22) decreases with an increase in ln, attains a
minimum value and then increases. The minimum value
9.38� 10�4 of p occurs for ln ¼ 37.3, and is essentially
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Table 1

Non-dimensional axial buckling stress (scr/E)� 104 of a homogeneous cylindrical shell deformed in an axially symmetric mode (m ¼ 0, n ¼ 0.3)

d l/R Eq. (23)

0.5 1.0 2.0 3.0 4.0 5.0

200 30.274(4�) 30.274(8) 30.274(16) 30.264(25) 30.248(33) 30.244(41) 30.261

400 15.166(6) 15.166(12) 15.127(23) 15.128(35) 15.127(46) 15.126(58) 15.130

600 10.088(7) 10.088(14) 10.088(28) 10.088(43) 10.086(57) 10.085(71) 10.087

800 7.5720(8) 7.5720(16) 7.5652(33) 7.5643(49) 7.5650(65) 7.5643(82) 7.5653

1000 6.0548(9) 6.0548(18) 6.0530(37) 6.0516(55) 6.0516(73) 6.0519(91) 6.0523

�Numbers in brackets are the axial wave numbers of the buckling modes; the same notation is used in the following tables.
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Fig. 3. The root p of Eq. (22) as a function of ln for a given

circumferential wave number m (d ¼ 500, b ¼ 0.6, k ¼ 0.2, l/R ¼ 2.0)

with Young’s modulus of the middle layer given by (a) Eq. (5), and (b)

Eq. (6).
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Fig. 4. Non-dimensional axial buckling load, pcr/10
�3, versus the radius-

to-thickness ratio, d, of the cylindrical shell for specified values of k

(l/R ¼ 2.0, b ¼ 0.6, n1 ¼ n2 ¼ 0.3) with Young’s modulus of the middle

layer given by (a) Eq. (5), and (b) Eq. (6).
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independent of the circumferential wave number m

implying thereby that the axial buckling load can be
computed by setting m ¼ 0 in Eq. (22). Results plotted in
Fig. 3(b) for E given by Eq. (6) show the same
characteristics as those in Fig. 3(a) for E given by
Eq. (5). For k ¼ 0.2 in Eqs. (5) and (6), the affine variation
in E for the middle layer results in a higher axial buckling
load than the parabolic variation.
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Fig. 5. Non-dimensional axial buckling load, pcr/10
�3, versus the radius-

to-thickness ratio, d, for the fully FG cylindrical shell for some specified

values of k (l/R ¼ 2.0, b ¼ 0.1, n1 ¼ n2 ¼ 0.3) with Young’s modulus given

by (a) Eq. (5), and (b) Eq. (6).

Table 2

The axial buckling load (pcr� 104) for different values of k and l/R (m ¼ 0, b ¼
Eq. (5))

k l/R

0.5 1.0 2.0 3

0.2 9.3965(6) 9.3965(12) 9.3965(24) 9

0.4 9.8318(6) 9.8318(12) 9.8101(25) 9

0.6 10.267(6) 10.238(13) 10.220(25) 1

0.8 10.702(6) 10.626(13) 10.626(26) 1

1.0 11.138(6) 11.013(13) 11.013(26) 1

1.2 11.502(7) 11.400(13) 11.400(26) 1

1.4 11.854(7) 11.788(13) 11.788(26) 1

1.6 12.205(7) 12.175(13) 12.157(27) 1

1.8 12.557(7) 12.557(14) 12.525(27) 1

2.0 12.909(7) 12.909(14) 12.894(27) 1

S.-R. Li, R.C. Batra / Thin-Walled Structures 44 (2006) 1039–10471044
For b ¼ t1/t2 ¼ 0.6 and different values of k, the

variation with the parameter d of the non-dimensional

axial buckling load, pcr, is plotted in Fig. 4 by considering

both the affine and the parabolic variations in Young’s

modulus of the middle layer. These results show that for a

fixed value of d, the buckling load increases with an

increase in k. For ko1, the stiffness of the middle layer is

less than that of the inner and the outer layers. Note that

the bending rigidity of the middle layer increases with an

increase in the value of k. Furthermore, for the same value

of k, the buckling load for the shell with the affinely graded

middle layer is greater than that of the shell with the

parabolically graded middle layer. For t2 ¼ h, or b ¼ 1,

one gets a fully FG shell. The variation of pcr with d is

plotted in Fig. 5 for several values of k, and conclusions

similar to those for results in Fig. 4 can be derived from

them.
For Young’s modulus of the middle layer given

by Eq. (5), values of the axial critical buckling load
of the cylindrical shell for different values of parameters
k and l/R are listed in Table 2. It is observed that
the buckling load increases with an increase in the
value of k or equivalently with an increase in the
overall stiffness of the middle layer, but is essentially
independent of l/R. However, the axial wave number
n increases with an increase in the length/radius in
order to keep the value of ln constant for a definite
buckling mode.
For Young’s modulus given by Eq. (5) we have listed in

Table 3 the non-dimensional axial buckling load for
different values of d and k. It is evident that parameters d
and k noticeably affect the buckling load pcr; the
wave number of the buckled mode increases monotonically
with an increase in d. However, for a fixed value of
d the wave number is essentially independent of k.
We note that d ¼ 10 is probably the lower limit for the
shell to be classified as thin. Also, negligible differences
0.6, n1 ¼ n2 ¼ 0.3, d ¼ 500, Young’s modulus of the middle layer given by

.0 4.0 5.0 6.0

.3923(37) 9.3907(49) 9.3906(61) 9.3909(73)

.8100(37) 9.8101(50) 9.8092(62) 9.8100(74)

0.219(38) 10.220(50) 10.218(63) 10.219(76)

0.621(38) 10.619(51) 10.619(64) 10.620(77)

1.013(39) 11.013(52) 11.013(65) 11.013(78)

1.400(39) 11.400(52) 11.400(65) 11.400(79)

1.781(40) 11.780(53) 11.780(66) 11.781(79)

2.155(40) 12.157(54) 12.155(67) 12.155(80)

2.529(41) 12.525(54) 12.526(68) 12.525(81)

2.891(41) 12.893(55) 12.891(68) 12.891(82)
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Table 3

The axial buckling load (pcr� 104) for different values of d and k (m ¼ 0, b ¼ 0.8, l/R ¼ 1.0, n1 ¼ n2 ¼ 0.3, Young’s modulus of the middle layer given by

Eq. (5))

d k

0.1 0.2 0.4 0.6 0.8 1.0

10 432.64(2) 445.99(2) 472.70(2) 499.40(2) 526.10(2) 552.79(2)

30 137.69(3) 142.83(3) 153.11(3) 163.39(3) 173.66(3) 183.94(3)

50 83.227(4) 86.202(4) 92.151(4) 98.101(4) 104.05(4) 110.00(4)

100 41.737(5) 43.474(5) 46.741(6) 49.546(6) 52.351(6) 55.156(6)

200 20.849(8) 21.594(8) 23.083(8) 24.5729(8) 26.061(8) 27.550(8)

300 13.828(9) 14.378(9) 15.438(10) 16.409(10) 17.380(10) 18.352(10)

400 10.377(11) 10.761(11) 11.530(11) 12.298(11) 13.067(11) 13.801(12)

500 8.2872(12) 8.6040(12) 9.2374(12) 9.8556(13) 10.434(13) 11.013(13)

600 6.9063(13) 7.1739(13) 7.7075(14) 8.1984(14) 8.6893(14) 9.1803(14)

700 5.9204(14) 6.1506(14) 6.5998(15) 7.0242(15) 7.4487(15) 9.8732(15)

800 5.1801(15) 5.3810(15) 5.7735(16) 6.1459(16) 6.5182(16) 6.8905(16)

900 4.6043(16) 4.7816(16) 5.1331(17) 5.4634(17) 5.7937(17) 6.1241(17)

1000 4.1444(17) 4.3024(17) 4.6185(17) 4.9182(18) 5.2140(18) 5.5099(18)
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in the values of the buckling load for different values
of m were found and these results are not included (e.g.,
see Fig. 3).
5. Conclusions

We have used Flügge’s theory and a semi-inverse method
to study the bucking of a thin cylindrical shell with FG
middle layer surrounded by two homogeneous layers, and
the material of each layer is assumed to be isotropic and
Hookean. Young’s modulus of the material of the middle
layer is taken to vary either affinely or parabolically from
that of the material of the inner layer to that of the material
of the outer layer. The simply supported top and bottom
surfaces of the shell are compressed axially by a load
distributed uniformly on those surfaces. Displacements
expressed in terms of trigonometric functions identically
satisfy kinematic boundary conditions at the edge surfaces.
These when substituted in the equilibrium equations yield
an eigen value problem for the determination of the axial
buckling load. It is found that a thin shell buckles in an
axisymmetric mode. The dependence of the axial buckling
mode upon various material and geometric parameters has
been computed and presented either in Tables or as plots.
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Appendix A

The rigidity matrices in Eq. (8) are

½A� ¼

A11 A12 0 0

A21 A22 0 0

0 0 A33 A34

0 0 A43 A44

2
666664

3
777775,

½B� ¼

B11 B12 0 0

B21 B22 0 0

0 0 B33 B34

0 0 B43 B44

2
666664

3
777775,

½C� ¼

C11 C12 0 0

C21 C22 0 0

0 0 C33 C34

0 0 C43 C44

2
666664

3
777775,

½D� ¼

D11 D12 0 0

D21 D22 0 0

0 0 D33 D34

0 0 D43 D44

2
666664

3
777775,

and expressions for the non-vanishing elements of these
matrices are given by

A11 ¼ ðRx0 þ x1Þ=R2; A12 ¼ ðRZ0 þ Z1Þ=R2,

A21 ¼ Z0=R; A22 ¼ x0=R,

A33 ¼ z0=R; A34 ¼ ðR
2z0 þ 2Rz1 þ z2Þ=R3,

A43 ¼ m2; A44 ¼ ðRz0 þ z1Þ=R2,
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B11 ¼ �ðRx1 þ x2Þ=R3; B12 ¼ �Z1=R2,

B14 ¼ Z0=R; B21 ¼ �Z1=R2,

B22 ¼ �ðx0 � Rm1Þ=R; B24 ¼ m1,

B33 ¼ �ð2Rz1 þ z2Þ=R3; B43 ¼ �ðRz0 þ z1 � R2m2Þ=R2,

C11 ¼ ðRx1 þ x2Þ=R2; C12 ¼ ðRZ1 þ Z2Þ=R2,

C21 ¼ Z1=R; C22 ¼ x1=R,

C33 ¼ z1=R; C34 ¼ ðR
2z1 þ 2Rz2 þ z3Þ=R3,

C43 ¼ z0 � Rm2; C44 ¼ ðRz1 þ z2Þ=R2,

D11 ¼ �ðRx2 þ x3Þ=R3; D12 ¼ �Z2=R2,

D14 ¼ Z1=R; D21 ¼ �Z2=R2,

D22 ¼ �ð�Rx0 þ x1 þ R2m1Þ=R; D24 ¼ x0 � Rm1,

D33 ¼ �ð2Rz2 þ z3Þ=R3,

D43 ¼ �ðz2 � R2z0 þ Rz1 þ R3m2Þ=R2,

where

xi ¼

Z h=2

�h=2

E

1� n2
zi dz; Zi ¼

Z h=2

�h=2

nE

1� n2
zi dz,

zi ¼

Z h=2

�h=2

E

2ð1þ nÞ
zi dz; ði ¼ 0; 1; 2; 3Þ,

m1 ¼
Z h=2

�h=2

E

1� n2
dz

Rþ z
; m2 ¼

Z h=2

�h=2

E

2ð1þ nÞ
dz

Rþ z
.

When the thickness of the inner layer equals that of the
outer layer (t1 ¼ t3) then

x1 ¼ x3 ¼ 0; Z1 ¼ Z3 ¼ 0; z1 ¼ z3 ¼ 0.

Appendix B

Constants with superscript star in Eqs. (13)–(15) are
given by

A�12 ¼ A12 þ A44; B�12 ¼ B12 þ B43; A�34 ¼ A34 þ C34=R,

A�22 ¼ A22 þ C22=R,

A�21 ¼ A21 þ A33 þ ðC21 þ C33Þ=R; B�22 ¼ B22 þD22=R,

B�21 ¼ B21 þ B33 þ ðD21 þD33Þ=R; B�24 ¼ B24 þD24=R,

D�12 ¼ D12 þD21 þD33 þD43,

D�14 ¼ D14 � RB21; D�24 ¼ D24 � RB22,

C�21 ¼ C21 þ C33 þ C43; C�12 ¼ C12 þ C34 þ C44.
Appendix C

Expressions for coefficients in Eqs. (19)–(21) are

a11 ¼ x�0 þm2dm�2=l
2
n; a12 ¼ �mðZ�0 þ z�0Þ=ln,

a13 ¼ �
1

12d2
lnx
�
2 þ ðdm

�
2 � z�0Þm

2=ln � Z�0=ln,

a21 ¼ a12; a22 ¼ z�0 þ
z�2
4d2
þm2x�0=l

2
n,

a23 ¼
3z�2 þ Z�2
12d2

mþmx�0=l
2
n; a31 ¼ a13; a32 ¼ a23,

a33 ¼
1

12d2
l2nx
�
2 �m2 z�0 � dm�2 �

2Z�2 þ 3z�2
12d2

� �
þ ½ðdm�1 � x�0Þðm

4 � 2m2Þ þ dm�1�=l
2
n,

where

d ¼
R

h
,

ðx�0; Z
�
0; z
�
0Þ ¼ ðx0; Z0; z0Þ=C,

ðx�2; Z
�
2; z
�
2Þ ¼ ðx2; Z2; z2Þ=D,

ðm�1; m
�
2Þ ¼ hðm1;m2Þ=C,

D ¼
E1h

3

12ð1� n21Þ
; C ¼

hE1

1� n21
.

For the FG middle layer with its Young’s modulus given
by Eq. (5), we have

x�0 ¼ 1� bþ fbðk þ 1Þ=2,

Z�0 ¼ ð1� bÞn1 þ n2bfðk þ 1Þ=2,

z�0 ¼ ð1� n1Þð1� bÞ=2þ ð1� n2Þfbðk þ 1Þ=4,

x�2 ¼ 1� b3 þ fb3ðk þ 3Þ=4,

Z�2 ¼ n1ð1� b3Þ þ n2fb
3
ðk þ 3Þ=4,

z�2 ¼ ð1� n1Þð1� b3Þ=2þ ð1� n2Þfb
3
ðk þ 3Þ=8,

m�1 ¼ ln
2dþ 1

2d� 1
� ln

2dþ b
2d� b

þ f k ln
2dþ b
2d� b

þ 2
d
b
ð1� kÞ ln

4d2

4d2 � b2

� 	
,

m�2 ¼
1� n1

2
ln
2dþ 1

2d� 1
� ln

2dþ b
2d� b

� �
þ f

1� n2
2

� k ln
2dþ b
2d� b

þ 2
d
b
ð1� kÞ ln

4d2

4d2 � b2

� 	
.

When Young’s modulus for the material of the middle
layer is given by Eq. (6), we have

x�0 ¼ 1� bþ fbð2k þ 1Þ=3,
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Z�0 ¼ ð1� bÞn1 þ n2bfð2k þ 1Þ=3,

z�0 ¼ ð1� n1Þð1� bÞ=2þ ð1� n2Þfbð2k þ 1Þ=6,

x�2 ¼ 1� b3 þ fb3ð2k þ 3Þ=5,

Z�2 ¼ n1ð1� b3Þ þ n2fb
3
ð2k þ 3Þ=5,

z�2 ¼ ð1� n1Þð1� b3Þ=2þ ð1� n2Þfb
3
ð2k þ 3Þ=10,

m�1 ¼ ln
2dþ 1

2d� 1
� ln

2dþ b
2d� b

þ f k ln
2dþ b
2d� b

þ 4ð1� kÞ
d2

b2
ln
2dþ b
2d� b

�
d
b

� �� 	
,

m�2 ¼
1� n1

2
ln
2dþ 1

2d� 1
� ln

2dþ b
2d� b

� �
þ f

1� n2
2

� k ln
2dþ b
2d� b

þ 4ð1� kÞ
d2

b2
ln
2dþ b
2d� b

�
d
b

� �� 	
,

where

f ¼
1� n21
1� n22

; b ¼
t2

h
,
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