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Abstract

The dynamic plastic buckling of a homogeneous and isotropic thin thermoviscoplastic cylindrical shell loaded radially is studied

analytically by analyzing the stability of its stressed/deformed configuration under superimposed infinitesimal perturbations. The wave

number of the perturbation that maximizes its initial growth rate is assumed to determine the buckling mode. Cubic algebraic equations

are obtained for both the maximum initial growth rate of perturbation and the corresponding wave number. The buckled shape of a

cylindrical shell is found to match well with that observed experimentally. The sensitivity of the buckled shape to the impact velocity, the

hardening modulus, and the material viscosity has been delineated. For axially restrained shells, it is found that for materials exhibiting

strain rate hardening only the maximum initial growth rate of the perturbation and the corresponding wave number vary as

ðs̄0=rbÞ1=3h�2=3 and ðr=s̄0Þ1=6Rb�1=3h�2=3, respectively. For axially unrestrained cylindrical shells made of strain hardening only

materials, the maximum initial growth rate of a perturbation and the corresponding wave number vary as ðs̄0=hÞðrEÞ�1=2 and

ðR=hðs̄0=EÞÞ1=2, respectively. Here s̄0 is the mean value of the generalized stress, r the mass density, b the material viscosity, h the shell

thickness, and R the mean radius of the shell.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic buckling is an important design consideration
for thin-walled metallic cylindrical, spherical, and conical
shells likely to be subjected to explosive loads that have
significant radial components. For example, explosive
devices are used for rapidly closing pipes, as shaped-charge
weapons, and as oil well perforators. In order to work
effectively, shaped charge liners should collapse without
buckling and wrinkling. There are numerous works on
buckling of rings and cylindrical shells subjected to radial
impulsive loads. Depending on the radius-to-thickness
ratio of the ring or the shell and its material, the buckling
can be either elastic or plastic. The transition from elastic
to plastic flow buckling occurs at a radius-to-thickness
ratio of about 200 for most engineering metals [1].
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Axial crushing of thin-walled shells under quasi-static
and dynamic loads has also been studied [2]. Several papers
are available on the plastic buckling of cylindrical shells
subjected to impulsive pressure loads, e.g. see the review
paper by Jones and Okawa [3].
A commonly adopted dynamic buckling criterion is due

to Abrahamson and Goodier [4], who introduced the
concept of amplification function, which is the ratio of the
maximum amplitude of shape imperfection associated with
the nth mode to its initial value. The structure is taken to
have buckled when the amplification function exceeds a
prespecified value (e.g. 10, 100, 1000,y). This criterion has
been successfully used to analyze the plastic buckling of
rods due to axial impact [5], plastic buckling of plates due
to in-plane forces [6], and plastic buckling of cylinders
under axial impact [7].
There are several works on the radial buckling of

cylindrical shells under impulsive loading. For example,
Goodier and McIvor [8] studied the buckling of cylindrical
elastic shells under uniform radial impulse with small initial
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Fig. 1. Schematic sketch of the problem studied, and the side view of a

cross-section.

Z.G. Wei, R.C. Batra / Thin-Walled Structures 44 (2006) 1109–11171110
velocity. Lindberg [9] found the buckling transition from
vibrating buckling to pulse buckling for intermediate initial
velocities. Pulse buckling can be found at higher initial
velocities [10]. Radial plastic buckling of cylindrical shells
has been studied in Refs. [11,12]. Wang and Ru [13] used
the following energy criterion to analyze dynamic buckling
of cylinders under impulsive loads: the structure is stable if
under a kinematically admissible perturbation imposed on
its dominant motion, the energy required to deform the
structure due to the perturbation is greater than or equal to
the work done by external forces. The instability of the
structure is taken to be synonymous with its buckling. The
energy criterion has been successfully applied to the radial
buckling of cylindrical shells by Gu et al. [14]. Batra and
Wei [15] hypothesized that the deformed state of a
structure is unstable if infinitesimal disturbances super-
imposed upon it begin to grow, and the wave number of
the perturbation corresponding to the maximum initial
growth rate gives the buckling mode of the structure. They
used this criterion to study the instability of a thin
thermoviscoplastic plate. Wei et al. [16] used the same
criterion to analyze buckling of a thin thermoviscoplastic
cylindrical shell under axial impact. This method has also
been used to delineate spacing among adjacent adiabatic
shear bands in thermoviscoplastic materials [17].

Here we use the perturbation method to analyze plastic
buckling of thin cylindrical shells under radial impulsive
loading. A closed form expression for the wave number of
the buckled cylinder has been derived, and scaling laws
stated in the abstract have been deduced.
2. Dynamic plastic buckling analyzed by the perturbation

method

2.1. Formulation of the problem

The dynamic elastic–plastic buckling of structures is a
complex phenomenon due to various factors such as inertia
effects, large deformations, and inelastic behavior. It is
thus not possible to solve the problem analytically, and
simplified models are necessary to deduce general trends.
Fig. 1 shows a schematic sketch of the problem studied.
Following [1], it is assumed that the shell is radially loaded
with a uniform prescribed velocity, elastic deformations are
negligible, plastic deformations are isochoric, perturba-
tions are infinitesimal so that no strain-rate reversal occurs
until the buckling modes have well developed, and the
material of the shell is isotropic, homogeneous, obeys von
Mises yield criterion, and exhibits isotropic strain and
strain-rate hardening and thermal softening. In [1] the
preferred buckling mode is determined numerically by the
amplification of initial imperfection for linear hardening
materials. Here closed form expressions for the growth rate
of perturbation and the wave number that maximizes it are
derived for linear viscoplastic materials. From these
buckling modes can be easily found.
It has been observed experimentally that imploded
cylindrical shells remain straight except in a narrow region
near each end where the shell flares outwards slightly.
Consequently, it is assumed here that the axial strain is
constant through the shell thickness, i.e., it is independent
of the thickness coordinate z. It has also been observed
that, even in a severely buckled shell, plane sections
perpendicular to the shell axis remain plane; thus the axial
strain is taken to be independent of the angular position y
of a point.
For a thin shell, it is reasonable to assume that the stress

component perpendicular to the mid-surface of the shell is
negligible, i.e., sz ¼ 0. Assuming that sides of shell
elements formed by planes perpendicular to the shell axis
remain plane during longitudinal bending, we apply the
radial load Nz to create a uniform stress field sx, sy and the
strain-rate field _�x; _�y. Let the total inward radial displace-
ment be w(x, t). Then the circumferential strain rate is

_�y ¼ � 1�
z

R

� � _o0

R
þ

z

R

� � 1

R
_o00 (1)

and the axial strain rate, unaffected by perturbations, is
given by

_�x ¼ �k_�y ¼ kðxÞ
_w0

R
; 0pkp1=2; z ¼ 0, (2)

where _w0 ¼ V 0 is the radial impact velocity, R equals the
mean radius of the shell, k is a measure of the axial
restraint, and a superimposed dot and a prime denote,
respectively, the partial differentiation with respect to time
t and the angular position y. _�x0; _�y0, are the longitudinal
and the circumferential strain rate components on the
midsurface of the shell. k ¼ 0 represents complete con-
straint in the axial direction, and k ¼ 1/2 no restraint.
The incompressibility condition is

_�x þ _�y þ _�z ¼ 0. (3)

The effective strain rate is given by [1]

_�2 ¼
2

3
ð_�2x þ _�

2
y þ _�

2
zÞ. (4)
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The axial and the hoop stress components derived from the
flow rule associated with the von Mises yield criterion can
be written as

sx ¼
2ð2_�x þ _�yÞs

3_�
; sy ¼

2ð2_�y þ _�xÞs
3_�

, (5)

where s is the effective stress.
We assume that the strain hardening, strain rate

hardening, and thermal softening of the material can be
approximately by

s ¼ s0ð1þ ā�Þð1þ b_�Þð1� gyÞ (6)

which follows from the Litonski–Batra thermoviscoplastic
relation [18]

s ¼ s0 1þ
�

�y

� �n

ð1þ B_�Þmð1� gyÞ, (7)

when m ¼ n ¼ 1. For many engineering materials the
addition to the flow stress due to work hardening, strain-
rate hardening, and thermal softening terms is small as
compared to the quasistatic yield stress of the material, and
Eq. (6) can be approximated by

s ¼ s0½1þ ā�þ b_�� gy�. (8)

If the part w of the plastic work is converted into heat and
effects of heat conduction can be neglected, then the
temperature rise y can be estimated by wse/rc where r is the
mass density and c the specific heat. Substitution for y into
Eq. (8) and setting a ¼ ā� gws�=rc, we get

s ¼ s0 1þ a�þ b_�½ �, (9)

where a and b are the effective strain hardening and the
strain rate hardening coefficients, respectively. w is usually
in the range of 0.85–0.95 for metals. Note that a depends
upon s and e. Since the buckling mode is determined
during early stages of deformation the temperature rise is
not significant and one can take a ¼ ā.

Henceforth, terms with powers of z/R higher than one
and terms involving products of displacement will be
neglected. In order to simplify expressions, we set

K1 ¼ 2ð1� k þ k2
Þ; K2 ¼ ð3K1=2Þ

1=2; K3 ¼ ð2� kÞ=K1

(10)

Thus, by substituting from Eqs. (1)–(3) into Eq. (4), we
get the following expression for the generalized strain rate.

_� ¼
2K2

3

_w0

R
�

z

R
K3

1

R
ð _w0 þ _w00Þ

� �
. (11)

The integration of Eq. (11) with respect to time gives

� ¼
2K2

3

w0

R
�

z

R
K3

1

R
ðw0 þ w00Þ

� �
. (12)

Eq. (12) is a little different from that obtained by
Lindberg and Florence [1] because they considered the
effect of initial imperfections, and we have assumed there
are no initial defects.

Substitution from Eqs. (11) and (12) into Eq. (9)
gives the following expression for the generalized
stress:

s ¼ s0 �
z

R

� � 2K2K3s0
3R

½aðw0 þ w00Þ þ bð _w0 þ _w00Þ�, (13)

where s0 ¼ s0½1þ ð2K2=3RÞðaw0 þ b _w0Þ� is the generalized
stress at the mid-surface of the shell. Stress components
derived from Eqs. (1), (2), (9), (11) and (5), have the
following expressions:

sx ¼ �
ð1� 2kÞs0

K2
þ

z

R

� � 1

K2
s0 1þ

_w00

_w0

� ��
�½ð2k � 1ÞK3 þ 1�

�
2ð2k � 1ÞK2K3s0 _w0

3R
a
ðw0 þ w00Þ

_w0
þ b 1þ

_w00

_w0

� �� �	

sy ¼ �
ð1� 2kÞs0

K2
þ

z

R

� � 1

K2
s0 1þ

_w00

_w0

� �
½ðk � 2ÞK3 þ 2�

�

�
2ðk � 2ÞK2K3s0 _w0

3R
a

w0 þ w00ð Þ

_w0
þ b 1þ

_w00

_w0

� �� �	
ð14Þ

Adopting the sign convention of [1], stresses have the
following resultant forces and moments

Nx ¼

Z h=2

�h=2
sx dz ¼ �

ð1� 2kÞhs0

K2
,

Ny ¼

Z h=2

�h=2
sy dz ¼ �

ð2� kÞhs0

K2
, ð15Þ

Mx ¼ �

Z h=2

�h=2
sxz dz

¼
h3

12RK2
s0 1þ

_w00

_w0

� �
½ð2k � 1ÞK3 þ 1�

�

�
2ð2k � 1ÞK2K3s0 _w0

3R
a
ðw0 þ w00Þ

_w0
þ b 1þ

_w00

_w0

� �� �	
,

My ¼ �

Z h=2

�h=2
syzdz

¼
h3

12RK2
s0 1þ

_w00

_w0

� �
½ðk � 2ÞK3 þ 2�

�

�
2ðk � 2ÞK2K3s̄0 _w0

3R
a
ðw0 þ w00Þ

_w0
þ b 1þ

_w00

_w0

� �� �	
,

ð16Þ

where h is the thickness of the shell. We have replaced the
generalized stress at the mid-surface by its mean value s0 as
was done in [1].
The transverse motion of a cylindrical shell is governed

by [1]

M 00
y �Nyw

00 þ rhR2 €w ¼ 0. (17)

After substituting from Eqs. (15)2 and (16)2 for forces and
moments into Eq. (17), we arrive at

€wþ aw00 þ b €w00 þ cw0000 ¼ 0, (18)
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where

a ¼
ð2� kÞs0

rR2K2

,

b ¼
h2

12rR3K2

3R½K3ðk � 2Þ þ 2�s0 þ 2K2K3ð2� kÞbs̄0
3R _w0

( )
,

c ¼
K3ð2� kÞas̄0h

2

18rR4
. ð19Þ

For materials exhibiting strain hardening only, b ¼ 0, then

a ¼
ð2� kÞs0

rR2K2

; b ¼
K3k

2h2s0

4rð2� kÞK2R
3 _w0

,

c ¼
K3ð2� kÞas̄0h

2

18rR4
. ð20Þ

For materials exhibiting strain rate hardening only, a ¼ 0,
then

a ¼
ð2� kÞs0

rR2K2

; b ¼
h2s̄0
12rR3

3k2

K1K2 _w0
þ

4b
3R

� �
. (21)

3. Buckling criterion and buckled shapes

In order to find the buckling mode we perturb the
deformed state of the cylindrical shell by an infinitesimal
amount. If the superimposed perturbations grow with time,
then the deformation is unstable, we regard the shell to
have buckled, and take its buckled shape to correspond to
the wave number of the perturbation that has the
maximum initial growth rate.

Let w0ðxÞ ¼ wðx; t0Þ give the deflection of the shell at
time t ¼ t0, and an infinitesimal perturbation dw(x, t)
where jdw=w0j51 and jd _w= _w0j51, be added to it. We
assume that resultant forces and moments are unaffected
by the superimposed perturbation. Furthermore, we set

dwðx; tÞ ¼ dwneZðt�t0Þ sinðoyÞ. (22)

In Eq. (22), Z is the initial growth rate of the
perturbation at time t ¼ t0, and o the wave number. A
positive value of Z implies that the deformed shell at time t0
has buckled. Substituting w ¼ w0+dw into Eq. (18), and
subtracting Eq. (18) from the resulting equation, we get the
following algebraic equation relating the wave number o to
the growth rate Z.

Z2 � ao2 þ bZo4 þ co4 ¼ 0. (23)

In order to find the wave number that has the maximum
initial growth rate we set

qZ
qo2
¼ 0. (24)

Eq. (24) gives

Z ¼
a� 2co2

2bo2
or o2 ¼

a

2ðbZþ cÞ
. (25)
Substituting from Eq. (25) into Eq. (23), we obtain the
following two cubic algebraic equations for the growth rate
and the wave number

Z3 þ f 1Z
2 þ f 3 ¼ 0,

o6 þ g1o
4 þ g2o

2 þ g3 ¼ 0, ð26Þ

where

f 1 ¼
c

b
; f 3 ¼ �

a2

4b
,

g1 ¼ �
2c2

ab2
; g2 ¼

2c

b2
; g3 ¼ �

a

2b2
.

The cubic Eq. (26) has either one real root and two
complex conjugate roots, or three real roots of which at
least two are equal, or three different real roots according
as ðp1=3Þ

3
þ ðq1=2Þ

2 and ðp2=3Þ
3
þ ðq2=2Þ

2 are positive,
zero, or negative, respectively. Here

p1 ¼ � f 2
1=3; q1 ¼ 2ðf 1=3Þ

3
þ f 3,

p2 ¼ � g2
1=3þ g2,

q2 ¼ 2ðg1=3Þ
3
� ðg1g2Þ=3þ g3.

If ðp1=3Þ
3
þ ðq1=2Þ

2
X0 and ðp2=3Þ

3
þ ðq2=2Þ

2
X0, then

real roots of the cubic Eqs. (26) are

Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q1=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1=3Þ

3
þ ðq1=2Þ

2
q

3

r

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q1=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1=3Þ

3
þ ðq1=2Þ

2

q
3

r
� f 1=3, ð27Þ

o2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q2=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2=3Þ

3
þ ðq2=2Þ

2

q
3

r

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q2=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2=3Þ

3
þ ðq2=2Þ

q
3

r
� g1=3. ð28Þ

If ðp1=3Þ
3
þ ðq1=2Þ

2o0 and ðp2=3Þ
3
þ ðq2=2Þ

2o0, then
three real roots of the cubic equations are

Z1 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�p1=3

p
cosðx=3Þ,

Z2; Z3 ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�p1=3

p
cosðx=3� 60�Þ ð29Þ

where

cosðxÞ ¼ �q1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðp1=3Þ

3

q
and

o2
1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�p2=3

p
cosðz=3Þ,

o2
2;o

2
3 ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�p2=3

p
cosðz=3� 60�Þ, ð30Þ

where cosðzÞ ¼ �ðq2=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðp2=3Þ

3
q

Þ.
For materials exhibiting strain rate hardening

only, a ¼ 0 which implies that f 1 ¼ g1 ¼ g2 ¼ 0. Thus
p1 ¼ 0, q1 ¼ f3, p2 ¼ 0, q2 ¼ q3, and Eqs. (26) have the
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solution

Z ¼
a2

4b

� �1=3

,

o ¼
a

2b2

� �1=6

. ð31Þ

Substituting from Eq. (21) into Eq. (31), and setting k ¼ 0,
we have a simple scaling law for an axially restrained
cylindrical shell

Z ¼ 31=3
s0

rb

 !1=3

h�2=3,

o ¼ ð27
ffiffiffi
3
p
Þ
1=6 r

s0

� �1=6

Rb�1=3ðhÞ�2=3. ð32Þ

Eq. (32) is very similar to Eq. (4.2.40) of [1]. However,
Eq. (32) is valid only for k ¼ 0, and Eq. (31) holds for k6¼0.

It is clear from Eq. (32) that the maximum initial growth
rate of the perturbation increases with an increase in the
mean generalized stress, but decreases with an increase in
the mass density, strain rate hardening coefficient, and the
shell thickness. The corresponding wave number increases
with an increase in the mass density, the radius of the shell,
but decreases with an increase in the strain rate hardening
coefficient, the shell thickness and the mean generalized
stress. However, the influence of the mass density and the
generalized stress on the wave number is insignificant due
to the low value of the exponent.

For axially restrained shells made of materials exhibiting
strain hardening only, we set k ¼ 0, then b ¼ 0, and get the
following simple scaling law.

Z ¼

ffiffiffiffiffiffiffi
3s0

p
h
ffiffiffiffiffiffiffi
Er
p ,

o ¼
ffiffiffiffiffiffiffiffiffi
3
ffiffiffi
3
p

q
R

h

ffiffiffiffiffi
s0

E

s
, ð33Þ
Table 1

Computed and observed number of half waves for 6061-T6 aluminum cylindr

Shell

number

Number of

shells

Radius R

(cm)

Thickness

h (cm)

Impulse I

(Ns/m2)

Velocity

(m/s)

S

(1

1 3 3.729 0.165 650 146 3

3 650 146 3

2 650 146 3

1 630 141 3

1 630 141 3

2 3 3.706 0.211 660 116 3

3 660 116 3

2 660 116 3

3 3 3.691 0.241 690 106 2

3 690 106 2

2 690 106 2

1 690 106 2
where E ¼ as0 is the hardening modulus of the material.
For these shells, the maximum initial growth rate of the
perturbation increases with the stress level, but decreases
with an increase in the mass density, strain hardening
modulus and the shell thickness. The corresponding wave
number increases with an increase in the radius of the shell
and the generalized mean stress level, decreases with an
increase in the strain hardening modulus and the shell
thickness, but is independent of the mass density. Expres-
sions in Eq. (33) coincide with those for the buckling of a
rod, except for the coefficient of the wave number [5].
If we set b ¼ c ¼ 0 which, for example, will hold when

a ¼ b ¼ k ¼ 0, then Eq. (23) give Z2 ¼ ao2. That is, the
initial growth rate of a perturbation is proportional to its
wave number.

3.1. Buckling modes

Even though buckling modes for a general linearly
strain- and strain-rate hardening material have been
derived, for comparison with experimental results available
in the literature, strain hardening only and strain rate
hardening only materials are considered separately.

3.1.1. Strain hardening only materials

The 6061-T6 aluminum alloy is assumed to be strain rate
insensitive, and have the following values for its material
parameters.

Eh ¼ 2275MPa; s0 ¼ 290MPa; r ¼ 2700 kg=m3,

V0 ¼ I=rh.

Here Eh is the hardening modulus, and I the initial impulse
per unit surface area imparted to the cylinder. Values of
other material and geometric parameters, and observed
and computed buckling modes are listed in Table 1.
Numerical calculations reported in [1] show that both

the amplitude and the velocity amplification spectra
ical shells

train rate

/s)

k ¼ ex/ey Strain (%) Half-waves

n (Exp.) [1]

Half-waves

n (Theo.)

[1]

Half-waves

n (Present

model)

915 0.48 9.5 15 13 14

915 0.42 9.2 15 14 15

915 0.28 8.6 16 16 17

781 0.09 8.4 19 22 18

781 0.03 8.3 20 19 18

130 0.48 6.2 14 11 11

130 0.42 6.0 15 12 12

130 0.28 5.6 15 14 13

872 0.48 5.2 11 10 10

872 0.42 5.0 12 10 10

872 0.28 4.7 12 12 11

872 0.03 4.5 16 15 12
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develop a strong preference for a narrow band of
harmonics, and it is reasonable to select the most amplified
harmonic as the buckling mode. It is shown there that the
mode number initially decreases with time, and after some
time the preferred mode does not change appreciably. The
buckling mode number predicted in [1], and the corre-
sponding experimental results are listed in Table 1.

Here we assume that the buckling mode develops at an
early stage of deformation. For k ¼ 0.42 and 0.48,
ðp2=3Þ

3
þ ðq2=2Þ

240, we use Eqs. (27) and (28). However,
for k ¼ 0.28 or less, and ðp2=3Þ

3
þ ðq2=2Þ

2o0, we employ
Eqs. (29) and (30). In this case, there are three real roots for
both the maximum initial growth rate of perturbation and
the corresponding wave number. In results reported below,
we have first solved the cubic algebraic equation by an
iterative method for the maximum growth rate of
perturbation, and then found the wave number from Eq.
(25)2. The mode numbers predicted by the present theory
are listed in the last column of Table 1. Considering the
simplicity of our model, the agreement between the
predicted and the experimental mode numbers is very
good.
3.1.2. Strain rate hardening only materials

Cylindrical shells made of strain-rate sensitive materials
such as fully annealed 1015 steel experience dynamic plastic
buckling when subjected to large radially inward impulses.
A buckling theory, based on resistive moments having a
visco-plastic component, is given in [1]. Here we compare
the predicted mode number using the perturbation method
with experimental results and also with results of Ref. [1].
The variation with time of buckling modes reported in [1]
shows that buckling modes do not change substantially
after some time. However, at the early stage of deforma-
tion, the buckling mode number based on the amplitude
Table 2

Computed and observed number of half waves for 1015 steel cylindrical shells

Shell

number

Radius R

(cm)

Thickness h

(cm)

Impulse I

(Ns/m2)

Velocity (m/

s)

Strain

(1/s)

1a 3.795 0.107 708.9 85.2 2245

1b 3.795 0.107 607.6 73.0 1924

2a 3.815 0.168 1382.3 105.7 2771

2b 3.815 0.168 744.3 56.9 1492

2c 3.815 0.168 744.3 56.9 1492

2d 3.815 0.168 638.0 48.8 1279

2e 3.815 0.168 638.0 48.8 1279

3a 3.780 0.213 2038.2 115.6 3058

3b 3.780 0.214 1514.2 85.9 2273

3c 3.780 0.214 1456.0 82.6 2185

4a 3.835 0.366 3319.6 116.4 3035

4b 3.835 0.366 2096.4 73.5 1917

4c 3.835 0.366 2038.4 71.5 1864

4d 3.835 0.366 1747.1 61.2 1596

4e 3.835 0.366 1513.8 53.1 1385

4f 3.835 0.366 1513.8 53.1 1385
amplification decreases with time but that based on the
velocity amplification increases with time.
From Eq. (32) we see that for computing the buckling

mode of strain rate hardening only materials, we need the
stress level and the value of viscosity. Based on experi-
mental results, Bodner and Symonds [19] have proposed
the following empirical relation between the yield stress
and the strain rate: s ¼ sy½1þ ð_�=DÞ1=P

�, where sy is the
static yield stress, and P and D are empirical constants. For
mild steel sy ¼ 207MPa, P ¼ 5 and D ¼ 40:4 s�1. We have
assumed a linear strain-rate hardening relation. Following
[1], we take this line to be tangent to the stress–strain curve
at the point whose abscissa equals the initial strain rate.
Thus, m ¼ bs0 ¼ sy=PD1=P_�1�1=p

0 , where _�0 ¼ ðV 0=RÞ ¼

ðI=rhRÞ. The intersection of this line with the stress axis
gives s0 ¼ sy½1þ ð_�0=DÞ1=P

ð1� 1=PÞ�. We take g ¼ m=s0
and k ¼ 0.17. Values of other material and geometric
parameters, as well as the buckling mode number
computed from Eq. (31) are listed in Table 2. It is evident
that the presently computed mode numbers agree well with
those observed experimentally.
3.2. Sensitivity of buckling mode to values of material

parameters

Cylindrical shells clamped at end faces have zero average
axial strain. Short cylindrical shells with no axial restraint
from end supports extend axially during their inward radial
motion. Long cylindrical shells, even without axial
restraints from supports, have axial stresses induced in
them by axial inertial forces. For a shell to extend, the
material has to be displaced axially away from the central
cross section. For sufficiently long shells, zero axial strain
conditions are established near the central cross section,
whereas near each free end zero axial stress conditions
rate s0
(MPa)

b (ms) Half- waves

n (Exp.) [1]

Half- waves

n (Theo.) [1]

Half- Waves

n (Present

model)

576 71.4 26 23 25

565 82.3 26 22 24

592 59.7 19 18 20

547 104.3 19 15 17

547 104.3 22 15 17

537 120.2 22 14 16

537 120.2 22 14 17

600 53.6 13 15 17

577 70.6 14 14 16

574 73.2 14 14 16

599 53.9 9 11 12

565 82.8 9 10 11

563 84.9 9 10 11

552 97.9 9 9 10

542 111.8 9 9 10

542 111.8 9 9 10
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waves upon (a) ratio k, (b) hardening modulus E, and (c) the applied

radial velocity V0.
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prevail. Thus, for each section of a cylindrical shell, the
value of k is essentially fixed throughout its deformations
and represents a measure of the axial restraint. At free ends
of the shell, k ¼ 0, and at the central cross section, the
value of k depends on the shell length but approaches zero
for very long shells due to axial inertia. Hence it is useful to
delineate the influence of k on the buckling mode.

3.2.1. Strain hardening only materials

Values of material and geometric parameters for this
parametric study are taken from the first row of Table 1.
While conducting the parametric study, only one variable
is varied at a time. From the plot of Fig. 2a showing the
dependence of the maximum initial growth rate of
perturbation and the corresponding number of half waves
upon the ratio k, we conclude that they decrease with an
increase in the ratio k. For example, the number of half
waves decreases from 18 to 14 when k increases from 0 to
0.5 implying thereby that a decrease in the axial restraint
increases the wave length of the buckled shape of the shell;
this trend agrees with that found in [1]. Fig. 2b depicts the
dependence of the maximum initial growth rate of
perturbation and the corresponding number of half waves
upon the hardening modulus. Both the maximum initial
growth rate of perturbation and the corresponding number
of half waves decrease monotonically with an increase in
the hardening modulus. For example, the number of half
waves decreases from 16 to 12 when the hardening modulus
increases from 900 to 2500MPa. Fig. 2(c) exhibiting the
dependence of the maximum initial growth rate of
perturbation and the corresponding number of half waves
upon the applied radial velocity reveals that both the
maximum initial growth rate of perturbation and the
number of half waves increase dramatically with an
increase in the applied radial velocity at first, then increase
slowly, and eventually reach a plateau. The number of half
waves increases from 7 to 11 with an increase in the applied
radial velocity from 9 to 44m/s; however, the number of
half waves increases only from 16 to 17 when the applied
radial velocity is increased from 263 to 428m/s.

3.2.2. Strain rate hardening only materials

We perform the parametric study by taking values of
material and geometric parameters from the first row of
Table 2. We have plotted in Fig. 3(a)–(c) the dependence of
the maximum initial growth rate of perturbation and the
corresponding number of half waves upon the axial
restraint k, the viscosity, and the radial velocity. As for
strain hardening only materials, both the maximum initial
growth rate and the corresponding number of half waves
decrease with an increase in k. The maximum initial growth
rate of perturbation and the corresponding number of half
waves decrease rapidly as the material viscosity is increased
from its small value, but rather slowly when the viscosity is
large to start with. For example, the number of half waves
decreases from 48 to 30 when viscosity increases from 1 to
37 ms but decreases from 17 to 14 when the viscosity is
increased from 250 to 460 ms. From the plot of Fig. 3(c), we
deduce that both the growth rate of perturbation and the
corresponding number of half waves increase dramatically
with an increase in the applied radial velocity at first, and
their rates of increase drop, and their values eventually
reach a plateau. For small values of the radial velocity, the
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rate of increase of growth rate of perturbation is higher for
strain hardening only materials than that for strain rate
hardening only materials. For strain-rate hardening
materials, the number of half waves increases from 20 to
24 when the applied radial velocity is increased from 9 to
44m/s, while the corresponding number of half waves
increases from 24 to 26 when the applied radial velocity
increases from 44 to 200m/s.

4. Remarks

Eqs. (31) and (33) imply that the system is always
unstable according to our definition of stability. This is
because material elasticity, which stabilizes the system, has
been disregarded. Furthermore, the structure becoming
unstable does not imply that it cannot sustain additional
loads. In fact, a significant portion of the work done by
external forces is absorbed during plastic deformations of a
structure.
Although buckling initiates at a small strain, in dynamic

deformations the initial buckling mode may not prevail
since the strain increases rapidly with time, and the
preferred buckling mode may change during the deforma-
tion process. Hence the final buckled shape will depend on
the entire loading history. However, it was observed in [1]
that the buckling mode was selected very early in the
deformation process. Both the present approach and that
employed in [1] give buckled shapes close to those observed
experimentally. The present method cannot be used to find
energy absorbed during the post-buckling deformations.
At high radial impulsive velocities, the inward displace-

ment of a pre-buckled shell is large, resulting in an
appreciable thickening of the shell that diminishes the
initial growth of perturbations. This suggests that the
stability of the structure improves as it is deformed more
severely, and since significant growth of disturbances
requires time, at sufficiently high collapse velocities, the
buckling may be negligible. However, in our work, the
thickening effect has been neglected, and computed
buckling loads are highly conservative.
We have considered only bending deformations of the

shell, and the effect of axial deformations has been
accounted for approximately through the axial constraint
factor. For a functionally graded cylinder with material
properties varying in the thickness direction, so, a and b
are functions of z. Thus expressions for Nx, Ny, Mx and My

given by Eqs. (15) and (16) will need modification.
The perturbation (22) is invariant when y is replaced by

p–y implying thereby that not all buckling modes may have
been found.

5. Conclusions

The dynamic plastic buckling of a thin linearly strain and
strain-rate hardening circular cylindrical shell under radial
inward impulse has been investigated. Buckling modes
computed on the hypothesis that a shell buckles when the
maximum initial growth rate of infinitesimal perturbations
superimposed upon the deformed state of the shell is
positive and the corresponding wave number of the
perturbation determines the buckling mode are found to
agree well with experimental findings. The sensitivity of the
buckled shape to values of the restraint offered by supports
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at the end faces, values of material parameters, and the
imposed radial velocity has been delineated. The analysis
also provides scaling laws for the wave number of the
buckled shape.
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