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Abstract

We use a mixed higher-order shear and normal deformable plate theory (HOSNDPT) of Batra and Vidoli with Poisson’s

ratio equal to 0.49 and the finite element method to analyze vibrations of a homogeneous isotropic rectangular plate made

of an incompressible linear elastic material. Through-the-thickness integrals are evaluated exactly, and those over an

element in the midplane of the plate are evaluated by using the 2� 2 Gauss quadrature rule. The plate theory equations are

used to ascertain frequencies of a clamped–clamped and a clamped–free square/rectangular plate of different aspect ratios.

Through-the-thickness modes of vibration valid for compressible and incompressible materials and missed by previous

investigators are also identified. Computed frequencies are found to match well with those deduced from the analytical

solution.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Because of the increasing use of rubberlike materials in aerospace and automotive industries, and the
realization that many biological materials can be modeled as incompressible, we study free vibrations of a
plate made of an isotropic incompressible linear elastic material. Of course, only isochoric (i.e. volume
preserving) deformations are admissible in an incompressible body; thus it can undergo only pure distortional
deformations. Corresponding to the constraint of incompressibility, the constitutive relation involves a
hydrostatic pressure that cannot be determined from the deformation field but is found from a solution of the
balance of linear momentum and the normal traction boundary conditions prescribed at least on a part of the
boundary of the body. For free vibrations of a plate, the top and the bottom surfaces are traction free, and
there are no body forces. The analytical solution for a simply supported rectangular plate given in Ref. [1]
provides benchmark frequencies for comparison with those computed from a plate theory.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Here, we employ the mixed higher-order shear and normal deformable plate theory (HOSNDPT) of Batra
and Vidoli [2], set Poisson’s ratio ¼ 0:49, and compare computed frequencies for a simply supported square
and a rectangular plate of aspect ratios (thickness/larger in-plane dimension) 1/4, 1/8, 1/12, and 1=20 with
those obtained analytically. Note that Poisson’s ratio ¼ 0:5 for an incompressible material. The plate theory
satisfies exactly the boundary condition of null surface tractions on the top and the bottom surfaces of a free
plate, and incorporates constitutive relations of three-dimensional linear elasticity. For a Kth order plate
theory, the three components of displacement and the three in-plane stresses are expanded in the thickness ðzÞ
direction upto terms of order zK but the transverse shear and the transverse normal stresses have terms of the
order zKþ2. Batra and Aimmanee [3] used this theory in conjunction with the finite element method to analyze
frequencies of a rectangular plate made of a compressible material. We show here that with through-the-
thickness integrals evaluated exactly, integrals over a 4-node quadrilateral element on the midsurface by a
2� 2 Gauss integration rule, and Poisson’s ratio ¼ 0:49, the HOSNDPT gives frequencies in close agreement
with those found from the analytical solution for a plate made of an incompressible material. The plate theory
equations are used to find natural frequencies of a clamped–clamped and a clamped–free rectangular plate
made of an incompressible material for which analytical solutions are difficult to find.

2. Formulation of the problem

In rectangular Cartesian coordinates and in the absence of body forces infinitesimal deformations of an
incompressible body are governed by the following balance of mass and the balance of linear momentum:

ui;i ¼ 0, ð1Þ

r €ui ¼ sij;j ; i; j ¼ 1; 2; 3. ð2Þ

Here r is the stress tensor, u the displacement, r40 the mass density, a superimposed dot indicates
differentiation with respect to time t, sij;j ¼ qsij=qxj, x the present position of a material point, and a repeated
index implies summation over the range of the index. Eq. (1) implies that deformations are isochoric or
volume preserving and hence the mass density stays constant. The balance of moment of momentum is
identically satisfied by requiring that the stress tensor r is symmetric. For an incompressible linear elastic
isotropic material:

sij ¼ �pdij þ 2meij , ð3Þ

eij ¼ ðui;j þ uj;iÞ=2, ð4Þ

where p is the hydrostatic pressure not determined from the infinitesimal strain tensor e, dij is the Kronecker
delta, and m40 is the shear modulus. Substitution for e from Eq. (4) into Eq. (3) and for r from Eq. (3) into
Eq. (2) gives:

r €ui ¼ �p;i þ mui;jj. (5)

Here we have assumed that the body is homogeneous; thus m and r are constants.
For a simply supported rectangular plate occupying the region ½0;Lx� � ½0;Ly� � ½0; h�, boundary conditions

are listed below:

u2 ¼ u3 ¼ 0; s11 ¼ 0 on x1 ¼ 0; Lx,

u1 ¼ u3 ¼ 0; s22 ¼ 0 on x2 ¼ 0; Ly,

si3 ¼ 0 on x3 ¼ 0; h. ð6Þ

Thus the top and the bottom surfaces of the plate are traction free. The lateral deflection u3 and the normal
tractions vanish on all four edge surfaces. Boundary conditions in Eq. (6) are not easily realized in a
laboratory where the plate edges are typically supported on rollers or sharp-knife wedges. However, they have
been widely used since Srinivas et al. [4] presented analytical solutions for free vibrations of a rectangular plate
made of a compressible linear elastic material. At a free edge the three components of the traction vector
vanish, and at a clamped edge the three components of the displacement vector equal zero.

For the steady-state vibration problem no initial conditions are needed.
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3. Brief review of the mixed higher-order shear and normal deformable plate theory (HOSNDPT)

In this section Greek indices range over 1 and 2, Latin indices over 1, 2 and 3, and a repeated index implies
summation over the range of the index. Recall that for studying free vibrations of a plate, the body force and
surface tractions identically vanish. We decompose as follows the position vector x of a point, the
displacement u, and the outward unit normal n:

xi ¼ xadia þ zdi3; ui ¼ vadia þ wdi3; ni ¼ n̂adia þ ndi3. (7)

Here dij is the Kronecker delta, and z ¼ x3. The strain tensor for infinitesimal strains is given by

eij ¼ êabdiadjb þ gaðdiadj3 þ di3djaÞ þ �di3dj3, (8)

where

êab ¼ ðva;b þ vb;aÞ=2; ea3 � ga ¼ ðv
0
a þ w;aÞ=2; e33 � � ¼ w0,

w0 ¼ qw=qz ¼ qw=qx3; v0a ¼ qva=qz. ð9Þ

Thus ga and � denote, respectively, the transverse shear strains and the transverse normal strain. Analogous to
the decomposition in Eq. (8) of the infinitesimal strain tensor, we write:

sij ¼ ŝabdiadjb þ st
aðdiadj3 þ di3djaÞ þ sndi3dj3, (10)

where ŝab, st
a and sn are, respectively, the in-plane components of the stress tensor, the transverse shear

stresses and the transverse normal stress.
For a compressible isotropic linear elastic material

ê11
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2ê12

8>><
>>:

9>>=
>>; ¼

1

E

1 �n 0

�n 1 0

0 0 2ð1þ nÞ

2
664

3
775
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where E is Young’s modulus, n Poisson’s ratio and 2m ¼ E=ð1þ nÞ. The constitutive relation for an
incompressible material is obtained from Eq. (11) by setting n ¼ 1=2. For n ¼ 1=2, Eq. (11) gives ê11 þ ê22 þ

� ¼ 0 and consequently there is no volume change; however Eq. (11) cannot be inverted to solve for stresses in
terms of strains. One usually takes n ¼ 0:49 or a similar value close to 0:5 and computes results for an
incompressible material.

With the transformation

x ¼ ð2z� hÞ=h, (12)

we use orthonormal Legendre polynomials L0ðxÞ, L1ðxÞ; . . . ;LK ðxÞ defined on ½�1; 1� and satisfyingZ 1

�1

LaðxÞLbðxÞdx ¼ dab; a; b ¼ 0; 1; 2; . . . ;K (13)

as basis functions to expand displacements and stresses in powers of z. Unless stated otherwise, indices a and b

range over 0; 1; 2; . . . ;K , and a repeated index is summed irrespective of its appearance as a subscript or a
superscript or it being enclosed in parentheses. Note that

L0aðxÞ ¼
dLa

dz
ðxÞ ¼

dLa

dx
2

h
¼

2

h

Xða�1Þ
b¼0

DabLb, (14)
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where Dab are constants. We set

vaðxb; z; tÞ ¼ LaðxÞvðaÞa ðxb; tÞ,

wðxb; z; tÞ ¼ LaðxÞwðaÞðxb; tÞ,

ŝabðxg; z; tÞ ¼ LaðxÞN
ðaÞ
ab ðxg; tÞ,

st
aðxg; z; tÞ ¼ ~LaðxÞT ðaÞa ðxg; tÞ,

snðxg; z; tÞ ¼ ~LaðxÞSðaÞðxg; tÞ, ð15Þ

where Z 1

�1

~LaðxÞLbðxÞdx ¼ dab; ~Lað�1Þ ¼ 0. (16)

In Eqs. (15)4 and (15)5, ~LaðxÞ; a ¼ 0; 1; 2; . . . ;K are modified Legendre polynomials satisfying Eqs. (16)1 and
(16)2, ~LaðxÞ is a polynomial of degree xaþ2.

It is evident from Eqs. (15)1–(15)3 that all three components of displacement and in-plane stresses are
expanded in z upto the power zK since 1; z; z2; . . . ; zK are basis functions equivalent to L0ðxÞ;L1ðxÞ; . . . ;LK ðxÞ.
However, the transverse normal and the transverse shear stresses have terms of the order zKþ2. Also, because
of the requirement in Eq. (16)2, Eqs. (15)4, and (15)5 satisfy exactly the condition of vanishing surface tractions
on the top and the bottom surfaces of the plate. When using a mixed variational principle such as the
Hellinger–Reissner principle to derive the plate equations, one can presume independent expansions for
stresses and displacements.

Expressions for the Legendre polynomials LaðxÞ and for the modified Legendre polynomials ~LaðxÞ are given
in Ref. [5]. Eqs. (15)4 and (15)5 need to be modified when either the top or the bottom or both of these surfaces
have non-zero surface tractions acting on them.

We refer the reader to Refs. [2,5,6] for details of deriving the balance laws, constitutive relations, and initial
and boundary conditions for the two-dimensional Kth-order plate theory, and simply list them below.

Equations of motion:

N
ðaÞ
ab;b �DabT ðbÞa ¼ Rab €v

ðbÞ
a on S; a ¼ 0; 1; 2; . . . ;K ; a ¼ 1; 2;

T ðaÞa;a �DabSðbÞ ¼ Rab €w
ðbÞ on S. ð17Þ

Constitutive relations:

fêðaÞg ¼ ½Cpp�fN ðaÞg þ ½Cpt�fT ðaÞg þ fCpngSðaÞ,

fgðaÞg ¼ ½Ctp�fN ðaÞg þ ½Ctt�PabfT
ðbÞg þ fCtngPabSðbÞ,

�ðaÞ ¼ ½Cnp�fN ðaÞg þ ½Cnt�PabfT
ðbÞg þ CnnPabSðbÞ. ð18Þ

Boundary conditions:

N
ðaÞ
ab n̂b ¼ F ðaÞa ; T ðaÞa n̂a ¼ F

ðaÞ
3 on qtS,

vðaÞa ¼ v̄ðaÞa ; wðaÞ ¼ w̄ðaÞ on duS. ð19Þ

Initial conditions:

vðaÞa ðxb; 0Þ ¼ v
�ðaÞ

a ðxbÞ,

wðaÞa ðxb; 0Þ ¼ w
� ðaÞ

a ðxbÞ. ð20Þ

Here,

Rab ¼
h

2

Z 1

�1

rLaLb dx ¼ r
h

2
dab; Pab ¼

h

2

Z 1

�1

~La
~Lb dx, (21)
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S is the midsurface of the plate, qtS and quS are parts of the boundary of S where surface tractions and

displacements are prescribed, respectively. N
ð0Þ
ab is the membranal stress tensor, N

ð1Þ
ab the matrix of bending

moments, and matrices N
ðaÞ
ab ða ¼ 1; 2; . . . ;KÞ are a linear combination of matrices of bending moments of

order zero through a. T ð0Þa is the resultant transverse shear force, T ð1Þa the moment of internal double forces
acting along the x3-axis, and T ðaÞa equals the linear combination of moments up to the ath order of internal
double forces. Sð0Þ is the transverse normal force, and SðaÞ the linear combination of moments up to the ath
order of the transverse normal force. Neither the transverse normal strain nor the transverse normal stress are
assumed to vanish. Constitutive and kinematic relations of the three-dimensional linear elasticity theory are
used. The presence of Pab in Eqs. (18)2 and (18)3 implies that cðaÞ and �ðaÞ depend upon TðbÞ and SðbÞ for
0pbpK ; thus equations for transverse strains and moments of transverse forces are strongly coupled. Because
of the presence of TðaÞ in Eqs. (17)1 and (17)2 they are coupled. Also the occurrence of Dab in these two
equations suggests that equations for a ¼ K involve Tð0Þ;Tð1Þ; . . . ;TðK�1Þ.

Substitution for v and w from Eqs. (15)1 and (15)2 into Eq. (9) gives expressions for the infinitesimal strains.
Substituting these and the expressions from Eqs. (15)3–(15)5 for stresses into the constitutive relation in
Eq. (11) and comparing the result with Eqs. (18) we can derive expressions for the matrices Cpp, Cpt etc. of
elastic constants. For na1=2 and a ¼ 0; 1; 2; . . . ;K Eqs. (18)1–(18)3 can be solved for NðaÞ;TðaÞ and Sa in terms
of strains, E and n; the results are given in Appendix C of Ref. [3]. When these expressions are substituted in
Eqs. (17)1 and (17)2 we get a set of second-order partial differential equations for vðaÞ and wðaÞ which can be
solved under boundary conditions (19) and initial conditions (20).

For free vibrations of a plate, initial conditions (20) are not needed and boundary conditions (19) are such that

F ðaÞa v̄ðaÞa ¼ 0; F
ðaÞ
3 w̄ðaÞ ¼ 0; no sum on a. (22)

That is, no work is done by external forces prescribed on the boundary qS of the midsurface S of the plate. For
simply supported (SP), clamped (C) and free (F) edges of the plate, boundary conditions are listed below:

SP : N
ðaÞ
11 ¼ 0; wðaÞ ¼ 0; v

ðaÞ
2 ¼ 0 on x1 ¼ 0;Lx,

N
ðaÞ
22 ¼ 0; wðaÞ ¼ 0; v

ðaÞ
1 ¼ 0 on x2 ¼ 0;Ly; ð23Þ

C : v
ðaÞ
1 ¼ v

ðaÞ
2 ¼ wðaÞ ¼ 0; on x1 ¼ 0; Lx; x2 ¼ 0; Ly; ð24Þ

F : N
ðaÞ
11 ¼ 0; N

ðaÞ
21 ¼ 0; T

ðaÞ
1 ¼ 0 on x1 ¼ 0; Lx,

N
ðaÞ
12 ¼ 0; N

ðaÞ
22 ¼ 0; T

ðaÞ
2 ¼ 0 on x2 ¼ 0; Ly. ð25Þ

Also for free vibrations we seek solutions of Eqs. (17), (18), and (23) or (24) or (25) of the form:

vðaÞa ðxb; tÞ ¼ V ðaÞa ðxbÞe
iot,

wðaÞðxb; tÞ ¼W ðaÞðxbÞe
iot, ð26Þ

where o is a natural frequency. For a ¼ 0; 1; 2; . . . ;K we get an eigenvalue problem which is solved by the finite
element method. Details of deriving a weak formulation of the problem and solving the resulting eigenvalue
problem are given in Ref. [3].

4. Results

Numerical results have been computed by dividing the midsurface S of the plate into a finite element mesh
comprised of 4-node isoparametric quadrilateral elements, consistent mass matrix, no shear-connection factor
and 2� 2 integration rule to evaluate various integrals appearing in the weak formulation of the problem. The
incompressibility of the plate material has been approximated by setting n ¼ 0:49. For higher values of n, e.g.,
n ¼ 0:499 or n ¼ 0:4999, the computer code failed to give stable results.

We assume that the plate is made of a rubberlike material. Material properties of rubber listed below are
taken from the website www.efunda.com.

E ¼ 1MPa; r ¼ 1000 kg=m3. (27)

http://www.efunda.com
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The non-dimensional natural frequencies Omn, are defined by

Omn ¼ omnh

ffiffiffi
r
m

r
, (28)

where subscripts m and n denote half-wave numbers in x- and y-directions, respectively. The minimum order
of the plate theory needed to find all frequencies depends upon the aspect ratio of the plate, and the boundary
conditions at the edges.

4.1. Simply supported square plate

For a simply supported square plate and different values of h=Lx, we have compared in Table 1 the first ten
natural frequencies of a simply supported square plate with their analytical values. The notations ‘‘o’’ and ‘‘i’’
represent, respectively, the out-of-plane modes with u3ðx1; x2;x3 ¼ h=2Þa0 for some x1 and x2, and the in-
plane modes with u3ðx1;x2;x3 ¼ h=2Þ ¼ 0 for every x1 and x2. Batra and Aimmanee [7] have pointed
out that the in-plane modes of vibration were missed by several investigators; e.g. see Refs. [8–11]. The plate is
usually called thin when h=Lxo0:1. The order, K, of the plate theory equals 5 for h=Lx ¼ 1=4 and 1=8,
and 3 for h=Lx ¼ 1=12 and 1=20. The number of out-of-plane modes increases with a decrease in the
value of h=Lx. A frequency computed with the plate theory agrees very well with the corresponding
analytical value except when either m or n is large. This difference can be reduced by refining the finite element
mesh.

4.2. Simply supported rectangular plates made of compressible/incompressible materials

We now compare frequencies of geometrically identical plates made of compressible and incompressible
materials. We have listed in Table 2 frequencies of a rectangular plate and Lx ¼ 2Ly with Poisson’s ratio equal
to either 0.3 or 0.49. Results for n ¼ 0:3 are taken from Ref. [3] where in-plane and out-of-plane modes of
vibration were indicated by letters a and s, respectively, and were erroneously called antisymmetric and
symmetric. Whereas only pure distortional modes of vibration are admissible in a plate made of an
incompressible material, there is no restriction on the modes of vibration that may occur in a plate made of a
compressible material. Both for compressible and incompressible materials the plate theory gives first ten
frequencies that are close to those obtained from the analytical solution of the problem. For h=Lx ¼ 1=4 the
first ten mode shapes for plates made of compressible and incompressible materials coincide with each
other except that their order is different. For example, ðm; nÞ ¼ ð0; 1Þ gives 3rd and 4th lowest frequency
for a plate made of an incompressible material but 4th one for a plate comprised of a compressible
material. For h=Lx ¼ 1=8 the 10th frequency corresponds to ðm; nÞ ¼ ð3; 0Þ for an incompressible material
but to ðm; nÞ ¼ ð4; 1Þ for a compressible material. Also for an incompressible material there are two frequencies
among the first ten modes of vibration for ðm; nÞ ¼ ð2; 1Þ—one corresponding to in-plane mode of deformation
and the other to the out-of-plane mode of deformation. However, for a plate made of a compressible
material, only the frequency corresponding to the out-of-plane mode of vibration is included in the first ten
frequencies.

4.3. Clamped square and rectangular plates

The first ten natural frequencies of clamped square and rectangular plates made of incompressible materials
are listed in Table 3. As for a simply supported plate, the number of in-plane modes of vibration
corresponding to the ten lowest natural frequencies decreases with a decrease in the value of h=Lx. As expected
the frequency of a clamped plate is higher than that of the corresponding simply supported plate. For a given
value of h=Lx the simply supported plate admits more in-plane modes of vibration than a clamped plate
corresponding to the first ten lowest frequencies. For example, for a square plate with h=Lx ¼ 1=8 there are
five in-plane modes of vibration for a simply supported plate and only two for a clamped plate. Recall that the
midsurface of the plate has null deflections in an in-plane mode of vibration.
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Table 1

Comparison of the first 10 normalized natural frequencies of a simply supported square plate made of a linear elastic isotropic

incompressible material computed from the analytical solution with those obtained from the mixed higher-order shear and normal

deformable plate theory

Number Mode Normalized frequencies

ðm; nÞ in-plane/out-of-plane Analytical Plate theory % error

(a) h=Lx ¼ 1=4
1 (1,1) o 0.577 0.579 0.37

2 (1,0), (0,1) i 0.785 0.789 0.46

3 (1,1) i 1.111 1.142 2.82

4 (2,1), (1,2) o 1.186 1.208 1.89

5 (2,0), (0,2) i 1.571 1.582 0.68

6 (2,2) o 1.656 1.679 1.41

7 (2,1), (1,2) i 1.756 1.831 4.28

8 (3,1), (1,3) o 1.925 1.993 3.54

9 (1,1) i 2.111 2.118 0.33

10 (2,2) i 2.221 2.446 10.14

(b) h=Lx ¼ 1=8
1 (1,1) o 0.167 0.169 0.92

2 (2,1), (1,2) o 0.386 0.398 3.05

3 (1,0), (0,1) i 0.393 0.394 0.33

4 (1,1) i 0.555 0.570 2.68

5 (2,2) o 0.577 0.591 2.36

6 (3,1), (1,3) o 0.694 0.739 6.43

7 (2,0), (0,2) i 0.785 0.791 0.71

8 (3,2), (2,3) o 0.855 0.891 4.22

9 (2,1), (1,2) i 0.878 0.913 3.95

10 (1,1) i 1.097 1.097 �0.03

(c) h=Lx ¼ 1=12
1 (1,1) o 0.077 0.078 0.88

2 (2,1), (1,2) o 0.184 0.190 3.18

3 (1,0), (0,1) i 0.262 0.263 0.30

4 (2,2) o 0.284 0.291 2.32

5 (3,1), (1,3) o 0.347 0.368 5.94

6 (1,1) i 0.37 0.377 1.87

7 (3,2), (2,3) o 0.437 0.454 3.93

8 (2,0), (0,2) i 0.524 0.527 0.48

9 (4,1), (1,4) o 0.55 0.598 8.79

10 (3,3) o 0.577 0.598 3.57

(d) h=Lx ¼ 1=20
1 (1,1) o 0.028 0.029 3.81

2 (2,1), (1,2) o 0.069 0.073 6.19

3 (2,2) o 0.109 0.114 4.45

4 (3,1), (1,3) o 0.135 0.148 9.44

5 (1,0), (0,1) i 0.157 0.158 0.43

6 (3,2), (2,3) o 0.173 0.184 6.46

7 (1,1) i 0.222 0.226 1.76

8 (4,1), (1,4) o 0.223 0.248 11.23

9 (3,3) o 0.234 0.252 7.56

10 (4,2), (2,4) o 0.258 0.284 10.05

R.C. Batra, S. Aimmanee / Journal of Sound and Vibration 307 (2007) 961–971 967
4.4. Clamped-free square and rectangular plates

When two opposite edges of a square or a rectangular plate are clamped and the other two are free, Table 4
lists the first ten frequencies. The first frequency corresponding to the out-of-plane mode of vibration is higher
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Table 2

Comparison of the first 10 normalized natural frequencies of a simply supported rectangular plate ðLx ¼ 2LyÞ computed from the

analytical solution with those obtained from the mixed Kth order shear and normal deformable plate theory. Frequencies of the

rectangular plate made of a compressible material computed with the plate theory and the analytical solution are also listed.

Number Mode Normalized frequencies Mode Normalized frequencies

(incompressible material) (compressible material)

ðm; nÞ in-plane/ Analytical Plate theory % error ðm; nÞ in-plane/ Plate theory Analytical

out-of-plane K ¼ 5 out-of-plane ðK ¼ 5Þ

(a) h=Lx ¼ 1=4
1 (1,0) i 0.785 0.789 0.48 (1,0) i 0.7857 0.7854

2 (1,1) o 1.186 1.190 0.37 (1,1) o 1.0725 1.0692

3 (0,1) i 1.571 1.578 0.42 (2,1) o 1.5248 1.5158

4 (2,0) i 1.571 1.582 0.73 (0,1) i 1.5715 1.5708

5 (2,1) o 1.656 1.670 0.84 (2,0) i 1.5763 1.5708

6 (1,1) i 1.756 1.791 1.98 (1,1) i 1.7587 1.7562

7 (2,1) i 2.221 2.364 6.46 (3,1) o 2.1500 2.1219

8 (3,1) o 2.283 2.331 2.10 (2,1) i 2.2343 2.2214

9 (3,0) i 2.356 2.386 1.27 (3,0) i 2.3766 2.3562

10 (1,2) o 2.702 2.737 1.29 (1,2) o 2.5490 2.5305

(b) h=Lx ¼ 1=8
1 (1,1) o 0.385 0.388 0.70 (1,1) o 0.3349 0.3373

2 (1,0) i 0.393 0.394 0.35 (1,0) i 0.3927 0.3929

3 (2,1) o 0.577 0.585 1.34 (2,1) o 0.5066 0.5131

4 (0,1) i 0.785 0.789 0.47 (3,1) o 0.7606 0.7800

5 (2,0) i 0.785 0.791 0.75 (0,1) i 0.7854 0.7858

6 (3,1) o 0.855 0.888 3.83 (2,0) i 0.7854 0.7888

7 (1,1) i 0.878 0.894 1.83 (1,1) i 0.8781 0.8797

8 (1,2) o 1.051 1.076 2.37 (1,2) o 0.9425 0.9550

9 (2,1) i 1.111 1.176 5.88 (2,2) o 1.0692 1.0823

10 (3,0) i 1.178 1.192 1.18 (4,1) o 1.0692 1.1131

Number Mode Normalized frequencies Mode Normalized frequencies

(incompressible material) (compressible material)

ðm; nÞ in-plane/ Analytical Plate theory % error ðm; nÞ in-plane/ Plate theory Analytical

out-of-plane K ¼ 3 out-of-plane ðK ¼ 3Þ

(c) h=Lx ¼ 1=12
1 (1,1) o 0.184 0.185 0.59 (1,1) o 0.1594 0.1581

2 (1,0) i 0.262 0.263 0.31 (2,1) o 0.2490 0.2455

3 (2,1) o 0.284 0.287 1.19 (1,0) i 0.2619 0.2618

4 (3,1) o 0.437 0.451 3.26 (3,1) o 0.3913 0.3811

5 (0,1) i 0.524 0.526 0.31 (1,2) o 0.4887 0.4822

6 (2,0) i 0.524 0.527 0.50 (0,1) i 0.5237 0.5236

7 (1,2) o 0.55 0.560 1.86 (2,0) i 0.5248 0.5236

8 (1,1) i 0.585 0.593 1.29 (2,2) o 0.5611 0.5544

9 (2,2) o 0.63 0.639 1.43 (4,1) o 0.5768 0.5544

10 (4,1) o 0.63 0.667 5.82 (1,1) i 0.5859 0.5854

(d) h=Lx ¼ 1=20
1 (1,1) o 0.069 0.070 1.72 (1,1) o 0.0601 0.0589

2 (2,1) o 0.109 0.112 2.68 (2,1) o 0.0962 0.0931

3 (1,0) i 0.157 0.158 0.44 (3,1) o 0.1567 0.1485

4 (3,1) o 0.173 0.183 5.79 (1,0) i 0.1571 0.1571

5 (1,2) o 0.223 0.229 2.80 (1,2) o 0.1963 0.1913

6 (2,2) o 0.258 0.265 2.61 (2,2) o 0.2279 0.2226

7 (4,1) o 0.258 0.283 9.77 (4,1) o 0.2399 0.2226

8 (0,1) i 0.314 0.315 0.44 (3,2) o 0.2812 0.2735

9 (2,0) i 0.314 0.316 0.63 (5,1) o 0.3438 0.313

10 (3,2) o 0.316 0.325 2.92 (0,1) i 0.3142 0.3142
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Table 3

First ten normalized natural frequencies of incompressible isotropic square and rectangular clamped plates computed with the mixed

HOSNDPT

Number h=Lx ¼ 1=4 h=Lx ¼ 1=8 h=Lx ¼ 1=12 h=Lx ¼ 1=20

Mode

in-plane/ Frequency in-plane/ Frequency in-plane/ Frequency in-plane/ Frequency

out-of-plane out-of-plane out-of-plane out-of-plane

(a) Square plate

1 o 0.867 o 0.315 o 0.146 o 0.058

2 o 1.405 o 0.565 o 0.279 o 0.116

3 o 1.836 o 0.755 o 0.386 o 0.164

4 i 1.967 o 0.889 o 0.464 o 0.204

5 i 2.012 o 0.904 o 0.470 o 0.206

6 o 2.110 i 1.010 o 0.552 o 0.244

7 o 2.137 i 1.023 i 0.609 o 0.312

8 o 2.452 o 1.041 i 0.627 o 0.319

9 i 2.684 o 1.277 o 0.690 o 0.349

10 i 2.842 o 1.285 o 0.692 o 0.353

(b) Rectangular plate, Lx ¼ 2Ly

1 o 1.528 o 0.636 o 0.338 o 0.144

2 o 1.890 o 0.793 o 0.426 o 0.183

3 i 2.304 o 1.050 o 0.576 o 0.256

4 o 2.459 i 1.169 o 0.723 o 0.337

5 o 2.818 o 1.251 i 0.765 o 0.359

6 o 3.093 o 1.366 o 0.775 o 0.368

7 i 3.151 o 1.381 o 0.788 o 0.422

8 o 3.158 o 1.556 o 0.899 i 0.452

9 i 3.305 i 1.592 o 1.009 o 0.486

10 o 3.517 i 1.702 i 1.041 o 0.503
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for this plate than that for an identical plate with all edges simply supported but lower than that with all edges
clamped.

4.5. Remarks

Qian, Batra and Chen [12] used the compatible HOSNDPT and the meshless local Petrov–Galerkin method
with basis functions obtained by the moving least squares approximation to compute frequencies of an
isotropic homogeneous plate with n ¼ 0:499. It thus seems that the meshless method can handle the
incompressibility constraint better than the finite element method. Qian and Batra [13] employed the
compatible HOSNDPT to find the in-plane distribution of the volume fractions of two constituents so as to
optimize the first fundamental frequency of a cantilever plate.

Batra [14] has derived a compatible HOSNDPT for a plate made of an incompressible linear elastic
material.

5. Conclusions

It is shown that the mixed HOSNDPT of Batra and Vidoli gives frequencies that agree well with those
obtained from the analytical solution, and predicts frequencies that are missed by the classical plate theory and
the first order shear deformation theory. The plate theory has been used to compute frequencies of square and
rectangular plates that are either simply supported or clamped or have two edges clamped and the other two
edges traction free.
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Table 4

First ten normalized natural frequencies of incompressible isotropic square and rectangular clamped–free plates computed with the mixed

HOSNDPT

Number h=Lx ¼ 1=4 h=Lx ¼ 1=8 h=Lx ¼ 1=12 h=Lx ¼ 1=20

Mode

in-plane/ Frequency in-plane/ Frequency in-plane/ Frequency in-plane/ Frequency

out-of-plane out-of-plane out-of-plane out-of-plane

(a) Square plate

1 o 0.580 o 0.199 o 0.093 o 0.037

2 o 0.615 o 0.216 o 0.102 o 0.040

3 i 0.747 o 0.327 o 0.159 o 0.063

4 o 0.959 i 0.373 o 0.238 o 0.099

5 o 1.194 o 0.474 i 0.247 o 0.104

6 o 1.253 o 0.494 o 0.249 o 0.115

7 i 1.423 o 0.582 o 0.288 o 0.126

8 i 1.504 o 0.593 o 0.304 i 0.148

9 o 1.540 i 0.710 o 0.414 o 0.173

10 o 1.628 i 0.747 o 0.432 o 0.190

(b) Rectangular plate

1 o 1.385 o 0.581 o 0.308 o 0.130

2 o 1.403 o 0.590 o 0.314 o 0.133

3 i 1.544 o 0.667 o 0.353 o 0.151

4 o 1.602 i 0.770 o 0.444 o 0.190

5 o 2.083 o 0.831 i 0.511 o 0.260

6 i 2.116 i 1.063 o 0.602 i 0.306

7 o 2.678 o 1.127 o 0.693 o 0.324

8 o 2.722 o 1.199 o 0.700 o 0.327

9 o 2.745 o 1.213 i 0.704 o 0.347

10 i 2.925 o 1.292 o 0.744 o 0.362
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