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R. C. BATRA

On the Asymptotic Stability of an Equilibrium Solution
of the Boussinesq-Equations

Es wird gezeigt, daft eine Gleichgewichtslosung der Boussinesq-Gleichungen unter gemischten Randbedingungen
asymptotisch stabil im Mittel ist.

It is shown that an equilibrium solution of the Boussinesq equations under mixed boundary conditions is asymptotically
stable in the mean.

lloHa3IdBaeTcJl, 'lTO HeHoTopoe peIlleHHe paBHOBeCHJI ypaBHeHHfi ByccHHecHa co CMeIllaHHbIMH HpaeBId-
MH YCJlOBlfJlMIf aClfMllTOTH'leCHH CTaOlfJlbHO B cpe~HeM.

1. Introduction.
Iri [1] I studied the asymptotic stability of an equilibrium solution of coupled nonlinear equations governing
the thermomechanical deformations of an incomp!essible Navier-Stokes-Fourier fluid. Therein I assumed that
the mass density following a particle was constant so there- was no buoyancy force. I now consider the case
where the mass density depends upon the temperature but assume that the thermomechanical deformations
of the viscous fluid are governed by the Boussinesq equations. These equations involv:e acouplil:lg of the internal
energy to the kinetic energy by the action of buoyance.

The problem of the stability of the Boussinesq equations has been studied extensively by JOSEPH [2, 3].
He studied the sta:bility of a solution of these equations under the following boundary conditions: the velocity
is assigned on the whole boundary and the thermal boundary condition is either of the first type or of the third
type. The stability criterion obtained by JOSEPH depends both ona Rayleigh number and a Reynolds number.
For an equilibrium solution both these numbers are zero. It follows from the general results proved in [2]
that the equilibrium solution of the Boussinesq equations is asymptotically stable under t,he boundary con.
ditions considered therein. .

Here I study the asymptotic stability of an equilibrium solution of the Boussinesq equations under mixed
boundary conditions and allow for the possibility that except for a material surface whose particles always
ha,ve zero velocity, the boundary conditions on the remaining bounding surface may alternate between that
of zero velocity and constant hydrostatic pressure. For the thermal boundary conditions I do not require that
there be a material surface on which the temperature is assigned for all times.

2. Formulation of the Problem

Consider a viscous fluid at rest in a closed rigid vessel. Assume that the fluid does not fill the container
and that in the reference configuration the fluid occupies a smooth and bounded region R with a smooth
boundary (JR. I assume that R is smooth enough to apply the divergence theorem, the Poincare inequality [4, 5]
and the KORN inequality [4]. Let X(R, t) denote a mapping of R into the present configuration so that ilJ= X(X, t)
gives in rectangular Cartesian coordinates the present position of a particle which occupied the place X in the
reference configuration. The Boussinesq equations governing the thermomechanical deformations of the fluid
are [6, pp. 16-18]

div v = 0 ,

(!v = div T + £1[1

0 = ,,'i]2() ,
(X«() 9)] 9 ,

(2.1)
where

T pI + 2fJ,D

Here v == ~,(X, t) = ~ denotes the velocity of X at time t, T denotes the Cauchy stress,tensor and '8
is the reference temperature at which the material properties (!, p" tX and" are evaluated. (!, p" tX and" are,
respectIvely, the density, the shear viscosity, the coefficient of thermal expansion and the thermometric
coefficient. For the sake of simplicity all of these are assumed to be positive constants. The analysis can be
modified (e.g. see [1]) to apply to the case when these depend upon X. Further in (2.1) p is the arbitrary hydro-
static pressure, D == (grad v + (gradv)T)/2 is, the strain-rate tensor and g denotes the gravity vector. The
term tX(O - 0) g represents the buoyancy force. Because of this term the apparent body force in (2.1)2 is non-
conservative.
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Let the fluid be given an arbitrary initial disturbance; and let the following thermomechanical boundary
conditions be maintained subsequently.

v(ilJ, t) = 0 , (ilJ, t) E X(oIR(t), t) X (0, t) ,

T(ilJ, t) n(ilJ, t) = - pon(ilJ, t) , (ilJ, t) E X(o~R,t) X (OJ t) , (2.2)

()(ilJ, t) = ()o , (ilJ, t) E X(o2R(t), t) X (0, t) ,

-" grad () . n(ilJ, t) = b(() - ()o) , (ilJ, t) E X(o~R, t) X (0, t).

Here n(ilJ, t) is an outward unit normal in the present configuration to th~ boundary X(oR, t) of X(R, e), °IR
and °2R denote subsets of oR and o~R == oR - aiR. The mechanical boundary condition (2..2h states that
the fluid adheres to the wil-lls of the container and the condition (2.2)2 implies that the part of the boundary
of the fluid not in contact with the walls is subjected to an uniform hydrostatic pressure. In order that heat
may radiate from the' fluid into the surroundings when the former is at a temperature higher than the latter,
b should be positive. When the 2-dimensional measure of the set n X(oIR(t), t) is positive and v E L2(X(R, e)),

t>o
grad v E L2(X(R, e)), one can conclude from the Poincare inequality [4] and the Korninequality [4] that

f V2 d V ~ kl(t) f tr D2 d V . (2.3)
x(R,t) x(R,t)

Also, if () E L2(X(R, e)), grad () E L2(X(R, *)), then the use* of Poincare's inequality [4, 5] leads to

I (() - ()0)2 d V ~ k2(t)[ f «() - ()0)2 dA + f Igrad ()j2 d V] . (2.4)
x(l!,t) ,x(6R,t) x(R,t)

In (2.3) and (2.4), kl(t) and k2(t) are positive valued functions of t whose values depend, respectively, upon
X(R, t), X(oIR(t), t) and X(R, e), X(o2R(t), t).

Hereafter, instead of (2.1) and (2;2) I shall be dealing with the following integral equations (2~5) derived
from them. Taking the inner product of (2.1)2 with v, multiplying (2.1)3 by (() - ()o), integrating the resulting
equations over X(R, e), and then simplifying by using the divergence theorem, the boundary conditions (2.2)
and the equation (2.lh' I obtain

()o) v d Vk

if

where
K(t) "" J V2 d V

X(R,t)

«(J(t) {}n)2 d V ,H(l) == J, -,
x(R,t)

and 'jJ == pie is the kinematic viscosity of the fluid. Let S denote the set of initial conditions for which there
exists a solution (v, () of the integral equations (2.5) such that for every t> 0,

(i) the mapping X of R into the present c~nfiguration is twice continuously differentiable with respect to X
and t,

K ~ B2, grad v E L2(X(R, t)) ,

(ii) () is continuously differentiable with respect to ~ and t, () E L2(X(R, t)), grad () E L2(X(R, t)),

(ill) IJKt == sup kt(t), (i = 1,2), is finite, and'
1>0

(iv) (v, ()) satisfies (2.5) and suitable initial conditions.

Such a solution of (2.5) can be regarded as a weak solution of (2.1) and (2.~). The requirement K ~ B2 implies
that the total kjneticenergy of the fluid stays bounded. I assume that S is non-empty and state the theorem
I wish to prove below.

Theorem: For every initial disturbance which belongs to S, the solution (v, ()) of (2.5) exhibits the behavior:

K(t) ~ 0, as t ~ 00 .'
(2.7)

H(t) ~ 0 exponentially as t ~ 00 ,

provided x, 11, (X and tke 2-dimensional measure of the set n X(olR(t), t) are positive.
1>0

i ,
C .*) For t~e case when either n X(82R(t), t) ~" or b >O, see [1]. That (2.4) holds even when n X (82R(t), t) =" and

b ;= o 18 shown ill [7]. t>O t>o
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3. Proof of the Theorem

Because of (2.2)3 I can replace the region x( a~R, t) of integration in the first integral on the right-hand side
of (2,5)2 by X(aR, e). Note that (0 -'- 00) E L2(x(aR, e)) follows from the requirement (ii) in the definition of
a weak solution of (2.5) and the theorem of trace [8]. Setting c == 2min (b, ,,), using (2.4) and k2(t) ~ IIK2 I obtain

.iI ~ - cK2H(t) . . . (3.1)

The smoothness required of O(X, t)'stated in the definition of a solution of (2.5) implies that Ii is bounded.
Hence H is of bounded variation on (0, T) and thus H E Ll(O, T) where T is an arbitrary real positive number.
Integration of (3.1) over (0, T) yields

H(T) ~ H(O) e-cK,T

which implies (2.7)2. Now using the Cauchy-Schwarz inequality, I bound the last integral on the right-hand
Side of (~.5)1 as follows.

19. f(O - 00) v dVI:;£: Igl2 f CO - 00)2 dV f v2 dV, ~ 1912 B2H(0) e-cK,t . (3.2)

Using the arguments needed to conclude that Ii E L1(0, T) I obtain k E L1(0, e). An integration of (2.5)1 over
(0, T) and the use of (3.2) give

T

K(T) ~ K(O) - 4v dt tr D2 d V + 2[1 -fiX (eO

4rx
..

(3.3)

(3.4)

01 .I .I
0

I

J -191 (B~(0»)1!2 (1 - e-cK,T!2) .
CK 2

Since the vessel is closed If;IJ d VI ~ constant. I conclude from (3.3) tliat
'\f tr D2 d V E £1(0, 00) i

for otherwise K(T) would be negative for some large value of T. (3.4), (2:3) and k1(t) ~ IJKl imply that

K(t) E £1(0,00) .
Now from (3.4), (3.2), (2.7) and (2.5)1 it follows that .

K(t) E Ll(O, 00) .
Thus K(t) is uniformly continuous in t and ,this when combined with (3.5) gives (2.7)1'

4. Remarks
The result (2.7)1 is weaker than the one obtainable from the more general results of JOSEPH [2]. A reason for
this is that whereas for the mechanical boundary condition considered by JOSEPH the potential energy of the
fluid remains constant for all times t > 0; this is not so for the mixed boundary conditions considered here
since there is the possibility of the exchange of the mechanical energy between the kinetic and the potential
Darts.~ It is clear from the preceeding analysis that a weak solution of (2.1)3 under the boundary conditions

(2.2)3,4 exhibits the behavior depicted by (2.7)2' In particular, (2.7)2 holds for a rigid heat conductor. That
a similar result holds for a nonlinear heat conductor is shown in [9].,
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