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~--- I --. -. Asymptotic Stability of an Equilibrium Solution

of a Hyperbolic Heat Equation

Introduction
In recent years there has been considerable interest [1-6] in
proposing a theory of heat conduction which allows for the
propagation of weak thermal disturbances i.e. discontinuities
in second order derivatives of temperature with finite speed.
Of the various theories proposed, some [4-6] can be derived
from the equation expressing the balance of internal energy
using modem continuum thermodynamics arguments. In [4]
BoGY and NAGHDx-'study rate dependent heat conductors and
show that, under certain conditions, weak thermal disturbances
can travel with finite speed. However, in the theory linearized
about a uniform temperature distribution thermal waves either
do not propagate or else they propagate with infinite speed.
If these rat~.dependent materials are studied according to an
entropy inequality proposed by MULLER [5] or that by GREEN
and LAWS [6] then one obtains in the theory linearized about
a uniform temperature distribution the equation

bi1 + cir = div (K grad 0') .
In this equation 0' denotes the temperature, a superimposed dot
indicates material time differentiation, c is the specific heat, K
is the thermal conductivity tensor and b is a material constant.
We assume that the body is homogeneous and therefore take
b, c and K to be constants throughout the body. The entropy
inequality implies that

c~O, s.Ks~OYs,

and allows lor the possibility that b be positive. When c > 0,
b > 0 and K is positive definite, the above equation is a hyper-
bolic equation and therefore allows for the p~opagation of
thermal waves with finite speed. -

For the heat conductor governed by the classical parabolic
linear equation [7, 8] and a nonlinear parabolic equation [9],
BATRA proved that the temperature field in the body approaches
in L2-norm the uniform temperature field under rather general
boundary conditions. The motivation for studying the problem
in [7] and for the present problem is the desire to show that for
dissipative loading devices*) constitutive quantities do not
depend upon the initial state of the loading device provided
that the entire past history of its boundary conditions is
known. For this purpose, as explained in [7], it is sufficient
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derIvatIon of its linear constitutIve relations.
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to prove the following

Theor~m: The equation
ba(x, t) + CG(ro, t) = (KijC1,j (ro, t»), I (ro, t) E R X (0, t), (1)

in which

b>O, c>O, Kij'f.i'f.j>O, V;#O, \-/

under the boundary conditions
C1(ro, t) = 0, (ro, t) E a1R X (0, t) ,
aC1 (3)
~ (ro, t) = 0, (ro, t) E a2R X (0, t) ,

and the initial conditions
~(ro, 0) = ~!I(ro) , ro E R, (4)
C1(ro, 0) = C1o(ro) , ro E R ,

has a weak solution which exhibits the behavior

1C12(ro,t)dV~O(e-yt), 1'>0 as t-o-oo, (5)

provided that C10 E L2(R), Go E L2(R) and when a1R = IP, the
initial conditions also satisfy
I C1o(ro) d V = )Go(ro) d V = 0 . - (6)

Here R c Em iff a smooth m-dimensional manifold with a
smooth boundary aR, a1R and a2R are disjoint parts of aR which
together make aR, ro denotes the position of a point with
respect to rectangular Cartesian coordinates, v is an outward
directed unit vector normal to the boundary at ro EaR, d V is
a volume measure on Em, and a comma followed by an index j
implies differentiation with respect to Xj.

Since we are requiring that C10 and Go belong only to L2(R)
we can only hope to find a weak solution of (1). (E.g. see LIONS
[11, p. 265]): If C10 and iTo have, reffpectively, two and one gene-
ralized derivatives in V(R) then C1 will have two generalized
derivatives with respect to ro and t in L2(R). Reviewing the
physics of the problem we note that if C10 and ao do not have
compact support contained in R, then thermal disturbances
will start propagating from the boundary into the interior of
the body or vice versa. Thus one cannot expect equation (1) to
have a smooth solution for all times and for all initial data
which belong to L2(R). In this context see also COURANT and
HILBERT [12, p. 673].

Proof of the Theorem
We propose to construct a solution of (1) by the GALEBXIN
method and will need the following result (GABBEDIAN [13]).
The normalized eigenfunctions of the eigenvalue problem

(Kijp,j(ro»),i = -,- ),p(ro) , ro E R,
p(ro) = 0, ro E a1R,

ap- (ro) = 0, ro E a2R , (7)
all

form a complete set in L2(R). Arranging the eigenvalues as
).1 ~ ),2 ~ ),3 ... and denoting the corresponding eigenfunctions
by P1' P2' ... we have ~ > 0 for a1R # IP and when a1R = IP,
),1 = 0; P1 = 1/VV(R)'),2 > O. Here V(R) stands for the volume
of R. Furthermore, the sequence ),n has no cluster point and
J.n = O(n) .for n large and greater than one. Let

N
C1N(ro, t) = E hn(t) pn(ro) , (8)

n=l
where Pn is an eigenfunction of the appropriate boundary value
problem. Requir~ that C1N satisfy (1) and (4), we substitute
for C1N from (8) into these equations, multiply the resulting
equations by Pn, integrate these over R and thus obtain

bkn + clin + ),nhn = 0 , n = 1, 2, ... , N ,
hn(O) = I C1o(ro) pn(ro) d V sIn, (9)
hn(O) = I Go(ro) pn(ro) d V = Un .
The solution of (9) is
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Cgn - 2I;"fn
f.. cos l1..t + -- sin !.tnt
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is a weak solution of (1). We note that the definitions (9)2,3 of
fn and gn imply that these are FOURIEB coefficients of the expan-
sion of 0'0 and Go in terms of a complete set of orthonormal
functions Ipn. Hence

00 00

1: fit ~ 10'~(:r) dV, 1: g,\ ~ 1i.1~(:r) dV. (11)
n=l n=l

We now prove that 0' given by (10) exhibits the behavior (5).
(:2For the case when).l >41j , we obtain from (10), (11) and the

inequality

(al + at)2 ~ 2(a~ + a~) , (12)

the following
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Since e- it tZ is 0 (e - it) as t --- 00, we again get the desired

result (5). Now envisage that

CZ .
),1<41)' $=1,2,...,P.

For this case (10) becomes

"...t

2

Unp ca(re, t) = E e - 2ii

"...1 .un

in which,un = ~~ 7 and it has been assumed that a,ll J (n~lhn(t) CPn(x) )! dV ~ 2P-l e- (i -:-2;,) t

An are distinct.
Should two or more eigenvalues An be equal, the above solution

is to be suitably modified. By following arguments essentially
parallel to those used by LIONS [II, p. 265] who considered the
problem for which c = 0, we can show that aN(ro, t) -+ a(ro, t) as
N -.. 00 in the space

V = {u(ro, t) I u(ro, t): R X (0, t) -.. El,
I u2 dv + Ilgrad up d V < oo} .

Therefore,

.
[( cl ) r 2 1 x 1 +~ O'odV +~

PI .I PI" ~

Since Al > 0, therefore clb - 2p1 > 0 and thus the first term in
(13) also decays exponentially as t --- 00.

When 81R = !P, Al = 0 and because of (6), h = gl = 0 and
the solution of (9) for n = 1 is ~ = O. In this case 0' is given
by (10) and the first term in the summation is identically zero.
The preceeding arguments show that 0' satisfies (5) in this case
too.

which is the desired result. Now let At = ~ and ).2 > ~ .
Then (10) becomes

l( C (X) _!-t g"-:2bJ"
+ 1: e 2b f" cos fl"t + .

,,=2 fl"

and therefore

'O'gdV)(l+(~ t2)~)+

~)l.


