Virginia Tech® home

Publications on Plates, Shells, Beams and Rods

  1. A.J.M. Ferreira, G.E. Fasshauer, R.C. Batra and J.D. Rodrigues, Static Deformations and Vibration Analysis of Composite and Sandwich Plates Using a LayerwiseTheory and RBF-PS Discretizations with Optimal Shape ParameterComposite Structures86, 328-343, 2008.
  2. A. J. M. Ferreira, G. E. Fasshauer, R. C. Batra, Natural Frequencies of Thick Plates Made of Orthotropic, Monoclinic, and Hexagonal Materials by a Meshless MethodJ. of Sound and Vibration319, 984-992, 2009.
  3. R. C. Batra, M. Porfiri and D. Spinello, Reduced-order Models for Microelectromechanical Rectangular and Circular Plates Incorporating the Casimir ForceInt. J. Solids and Structures45, 3558-3583, 2008.
  4. R. C. Batra, M. Porfiri and D. Spinello, Effects of van derWaals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular MicroplatesSensors8, 1048-1069, 2008.
  5. R. C. Batra, M. Porfiri, and D. Spinello, Vibrations and Pull-in Instabilities of Microelectromechanical von Karman Elliptic Plates Incorporating the Casimir ForceJ. of Sound and Vibration315, 939-960, 2008.
  6. R. C. Batra, Higher Order Shear and Normal Deformable Theory for Functionally Graded Incompressible Linear Elastic PlatesThin-Walled Structures45, 974-982, 2007.
  7. M. C. Ray and R. C. Batra, Vertically Reinforced 1-3 Piezoelectric Composites for Active Damping of Functionally Graded PlatesAIAA J45:7, 1779-1783, 2007.
  8. R. C. Batra and S. Romano, Failure of Dynamically Loaded Thermoelastoviscoplastic Rectangular PlateAIAA J. 45:8, 2015-2023, 2007.
  9. R. C. Batra and S. Aimmanee, Vibration of an Incompressible Isotropic Linear Elasatic Rectangular Plates with a Higher Order Shear and Normal Deformable TheoryJ. of Sound and Vibration, 307, 961-971, 2007.
  10. J. R. Xiao, D. F. Gilhooley, R. C. Batra, J. W. Gillespie Jr. and M. A. McCarthy, Analysis of Thick Composite Laminates Using a Higher-Order Shear and Normal Deformable Plate Theory (HOSNDPT) and a Meshless MethodComposites B39, 414-427, 2008.
  11. A. Ferreira, C. Roque, G. Fasshauer, R. Jorge and R. Batra, Analysis of Functionally Graded Plates by a Robust Meshless MethodMechanics of Advanced Materials and Structures, 14, 577-587, 2007.
  12. S. Aimmanee and R. C. Batra, Analytical Solution for Vibration of an Incompressible Isotropic Linear Elastic Rectangular Plate, and Frequencies Missed in Previous SolutionsJ. Sound and Vibration302, 613-620, 2007.
  13. J. R. Xiao, R. C. Batra, D. F. Gilhooley, J. W. Gillespie, Jr. and M. A. McCarthy, Analysis of Thick Plates by using a Higher-Order Shear and Normal Deformable Plate Theory and MLPG Method with Radial Basis FunctionsComputer Methods in Applied Mechanics and Engineering196, 979-987, 2007.
  14. D. F. Gilhooley, R. C. Batra, J. R. Xiao, M. A. McCarthy, J. W. Gillespie Jr., Analysis of Thick Functionally Graded Plates by using Higher-Order Shear and Normal Deformable Plate Theory and MLPG Method with Radial Basis FunctionsComposite Structures80, 539-552, 2007.
  15. A.J.M. Ferreira, R.C. Batra, C.M.C. Roque, L.F. Qian, R.M.N. Jorge, Natural Frequencies of Functionally Graded Plates by a Meshless MethodComposite Structures,75, 593-600, 2006.
  16. S. R. Li, R. C. Batra and L.-S. Ma, Vibration of Thermally Post-Buckled Orthotropic Circular PlatesJ. Thermal Stresses30, 43-57, 2007.
  17. R. C. Batra and Zhicun Wang, Failure Mode Transition Speed in Three-Dimensional Transient Deformations of a Microporous Heat-ConductingThermoelastoviscoplastic Prenotched PlateJ. Thermal Stresses28, 533-562, 2005.
  18. R. C. Batra and S. Aimmanee, Vibrations of Thick Isotropic Plates with Higher Order Shear and Normal Deformable Plate TheoriesComputers & Structures83, 934-955, 2005.
  19. A. Ferreira and R. C. Batra, Natural Frequencies of Orthotropic, Monoclinic and Hexagonal Plates by a Meshless MethodJ. of Sound and Vibration285, 734-742, 2005.
  20. R. C. Batra, Z. G. Wei, Dynamic Buckling of a Thin Thermoviscoplastic Rectangular PlateThin-Walled Structures43, 273-290, 2005.
  21. L. F. Qian and R. C. Batra, Three-Dimensional Transient Heat Conduction in a Functionally Graded Thick Plate with a Higher-Order Plate Theory and a Meshless LocalPetrov-Galerkin MethodComputational Mechanics , 35, 214-226, 2005.
  22. A. J. M. Ferreira, R. C. Batra, C. M. C. Roque, L. F. Qian and P. A. L. S. Martins, Static Analysis of Functionally Graded Plates Using Third-order Shear Deformation Theory and a Meshless MethodComposite Structures69, 449-457, 2005.
  23. R. C. Batra and J. Jin, Natural Frequencies of a Functionally Graded Anisotropic Rectangular PlateJ. Sound and Vibration282, 509-516, 2005.
  24. R. C. Batra and M. H. Lear, Simulation of Brittle and Ductile Fracture in an Impact Loaded Prenotched PlateInt. J. of Fracutre126, 179-203, 2004.
  25. L. F. Qian and R. C. Batra, Transient Thermoelastic Deformations of a Thick Functionally Graded PlateJ. of Thermal Stresses27, 705-740, 2004.
  26. L. F. Qian and R. C. Batra, Design of Bidirectional Functionally Graded Plate for Optimal Natural FrequenciesJ. of Sound and Vibration280, 415-424, 2005.
  27. L. F. Qian, R. C. Batra and L. M. Chen, Analysis of Cylindrical Bending Thermoelastic Deformations of Functionally Graded Plates by a Meshless Local Petrov-GalerkinMethodComputational Mechanics33, 263-273, 2004.
  28. L. F. Qian, R. C. Batra and L. M. Chen, Static and Dynamic Deformations of Thick Functionally Graded Elastic Plate by using Higher-Order Shear and Normal Deformable Plate Theory and Meshless Local Petrov-Galerkin MethodComposites: Part B35, 685-697, 2004.
  29. S. S. Vel, R. Mewer and R. C. Batra, Analytical Solution for the Cylindrical Bending Vibration of Piezoelectric Composite PlatesInt. J. Solids & Structures41, 1625-1643, 2004.
  30. R. C. Batra, L. F. Qian and L. M. Chen, Natural Frequencies of Thick Square Plates Made of Orthotropic, Trigonal, Monoclinic, Hexagonal and Triclinic MaterialsJ. Sound and Vibration270, 1074-1086, 2004.
  31. L. F. Qian, R. C. Batra and L. M. Chen, Free and Forced Vibrations of Thick Rectangular Plates by using Higher-Order Shear and Normal Deformable Plate Theory andMeshless Petrov-Galerkin (MLPG) MethodComputer Modeling in Engineering and Sciences4, 519-534, 2003.
  32. S. S. Vel and R. C. Batra, Three-dimensional Exact Solution for the Vibration of Functionally Graded Rectangular PlatesJ. of Sound and Vibration 272, 703-730. 2004.
  33. S. S. Vel and R. C. Batra, Three-dimensional Analysis of Transient Thermal Stresses in Functionally Graded PlatesInt. J. of Solids & Structures40, pp. 7181-7196, 2003.
  34. R. C. Batra and S. Aimmanee, Missing Frequencies in Previous Exact Solutions of Free Vibrations of Simply Supported Rectangular PlatesJ. of Sound & Vibrations,265, 887-896, 2003.
  35. L. F. Qian, R. C. Batra and L. M. Chen, Elastostatic Deformations of a Thick Plate by using a Higher-Order Shear and Normal Deformable Plate Theory and TwoMeshless Local Petrov-Galerkin (MLPG) MethodsComputer Modeling in Eng'g and Sciences4, 161-176, 2003.
  36. S. S. Vel and R. C. Batra, Generalized Plane Strain Thermopiezoelectric Analysis of Multilayered PlatesJ. Thermal Stresses26, 353-377, 2003.
  37. R. C. Batra, S. Vidoli and F. Vestroni, Plane Waves and Modal Analysis in Higher-Order Shear and Normal Deformable Plate TheoriesJ. Sound & Vibration, 257(1), 63-88, 2002.
  38. S. S. Vel and R. C. Batra, Exact Solutions for Thermoelastic Deformations of Functionally Graded Thick Rectangular PlatesAIAA J.40(7), 1421-1433, 2002.
  39. R. C. Batra and T. S. Geng, Enhancement of the Dynamic Buckling Load for a Plate by Using Piezoceramic ActuatorsSmart Materials & Structures10, 925-933, 2001.
  40. R. C. Batra, N. A. Jaber and M. E. Malsbury, Analysis of Failure Modes in an Impact Loaded Thermoviscoplastic Prenotched PlateInt. J. Plasticity, 19(2), 139-196, 2003.
  41. R. C. Batra and S. Vidoli, Higher Order Piezoelectric Plate Theory Derived from a Three-Dimensional Variational PrincipleAIAA J.40(1), 91-104, 2002.
  42. S. S. Vel and R. C. Batra, Exact Solution for Rectangular Sandwich Plates with Embedded Piezoelectric Shear ActuatorsAIAA J.39, 1363-1373, 2001.
  43. R. C. Batra and N. A. Jaber, Failure Mode Transition Speeds in an Impact Loaded Prenotched Plate with Four Thermoviscoplastic RelationsInt. J. Fracture, 110, 47-71, 2001.
  44. S. S. Vel and R. C. Batra, Exact Solution for the Cylindrical Bending of Laminated Plates with Embedded Shear ActuatorsSmart Materials & Structures10, 240-251, 2001.
  45. S. S. Vel and R. C. Batra, Analysis of Piezoelectric Bimorphs and Plates with Segmented ActuatorsThin-Walled Structures39(1), 23-44, 2001.
  46. S. S. Vel and R. C. Batra, Generalized Plane Strain Thermoelastic Deformation of Laminated Anisotropic Thick PlatesInt. J. Solids Structures38, 1395-1414, 2001.
  47. S. Vidoli and R. C. Batra, Derivation of Plate and Rod Equations for a Piezoelectric Body from a Mixed Three-Dimensional Variational Principle, J. Elasticity59, 23-50, 2000.
  48. S. S. Vel and R. C. Batra, Three-dimensional Analytical Solutions for Hybrid Multilayered Piezoelectric Plates J. Appl. Mechs.67, 558-567, 2000.
  49. S. S. Vel and R. C. Batra, Closure to The Generalized Plane Strain Deformations of thick Anisotropic Composite Laminated PlatesInt. J. Solids Structures38, 483-489, 2000.
  50. Z.-Q. Cheng and R. C. Batra, Deflection Relationships Between the Homogeneous Plate Theory and Different Functionally Graded Plate TheoriesArchives of Mechanics, 52, 143-158, 2000.
  51. Z.-Q. Cheng and R. C. Batra, Three-Dimensional Thermoelastic Deformations of a Functionally Graded Elliptic PlateComposites B31, 97-106, 2000.
  52. S. S. Vel and R. C. Batra, Cylindrical Bending of Laminated Plates with Distributed and Segmented Piezoelectric Actuator/SensorsAIAA J.38, 857-867, 2000.
  53. R. C. Batra and R. R. Gummalla, Effect of Material and Geometric Parameters on Deformations Near the Notch-tip of a Dynamically Loaded Prenotched Plate, Int. J. Fracture101, 99-140, 2000.
  54. Z. Q. Cheng and R. C. Batra, Exact Correspondence Between Eigenvalues of Membranes and Functionally Graded Simply Supported Polygonal PlatesJ. Sound & Vibration229, 879-895, 2000.
  55. S. S. Vel and R. C. Batra, The Generalized Plane Strain Deformations of Thick Anisotropic Composite Laminated PlatesInt. J. Solids Structures37, 715-733, 2000.
  56. S. Vel and R. C. Batra, Analytical Solutions for Rectangular Thick Laminated Plates Subjected to Arbitrary Boundary ConditionsAIAA J.37, 1464-1473, 1999.
  57. N. V. Nechitailo and R. C. Batra, Penetration/Perforation of Aluminum, Steel and Tungsten Plates by Ceramic RodsComputers & Structures66, 571-583, 1998.
  58. S. Krishnaswamy, Z. H. Jin and R. C. Batra, Stress Concentration in an Elastic Cosserat Plate Undergoing Extensional DeformationsJ. Appl. Mechs.65, 66-70, 1998.
  59. X. Q. Liang and R. C. Batra, Changes in Frequencies of a Laminated Plate Caused by Embedded Piezoelectric Layers, AIAA J.35, 1672-1673, 1997.
  60. Z. H. Jin and R. C. Batra, A Crack at the Interface Between a Kane-Mindlin Plate and a Rigid SubstrateEng'g Fracture Mechs.57, 343-354, 1997.
  61. Z. H. Jin and R. C. Batra, Dynamic Fracture of a Kane-Mindlin PlateTheoretical and Applied Fracture Mechs., 26, 199-210, 1997.
  62. R. C. Batra and N. V. Nechitailo, Analysis of Failure Modes in Impulsively Loaded Pre-Notched Steel PlatesInt. J. Plasticity13, 291-308, 1997.
  63. R. C. Batra and X. Q. Liang, The Vibration of a Rectangular Laminated Elastic Plate with Embedded Piezoelectric Sensors and ActuatorsComputers & Structures63, 203-216, 1997.
  64. J. D. Wang, R. C. Batra and K. Isogimi, Analysis of Stress Distribution in a Thin Rectangular Plate by the Method of Caustics, Arch. Mechs.48, 1011-1024, 1996.
  65. R. C. Batra and Z. Peng, Development of Shear Bands during the Perforation of a Steel PlateComputational Mechs.17, 326-334, 1996.
  66. R. C. Batra, X. Q. Liang and J. S. Yang, The Vibration of a Simply Supported Rectangular Elastic Plate due to Piezoelectric ActuatorsInt. J. Solids \& Structures33, 1597-1618, 1996.
  67. R. C. Batra, X. Q. Liang and J. S. Yang, Shape Control of Vibrating Simply Supported PlatesAIAA J.34, 116-122, 1996.
  68. R. C. Batra and K. Ghosh, Deflection Control During Dynamic Deformations of a Rectangular Plate Using Piezoceramic ElementsAIAA J.33, 1547-1548, 1995.
  69. K. Ghosh and R. C. Batra, Shape Control of Plates Using Piezoceramic ElementsAIAA J.33, 1354-1357, 1995.
  70. J. S. Yang, R. C. Batra and X. Q. Liang, The Cylindrical Bending Vibrations of a Laminated Elastic Plate Due to Piezoelectric ActuatorsSmart Materials & Strucutres,3, 485-493, 1994.
  71. J. S. Yang and R. C. Batra, A Theory of Electroded Thin Thermopiezoelectric Plates Subject to Large Driving VoltagesJ. Appl. Physics76, 5411-5417, 1994.
  72. A. Kadic-Galeb and R. C. Batra, Stress Distribution in an Elastic Perfectly Plastic Plate Subjected to Corrosive Environmental LoadsInt. J. Engng Sci.31, 1301 - 1307, 1993.
  73. R. C. Batra and R. N. Dubey, Impulsive Loading of Circular PlatesInt. J. Solids and Structures7, 965-978, 1971.

Shells

  1. M. C. Ray and R. C. Batra, Smart Constrained Layer Damping of Functionally Graded Shells using Vertically/Obliquely Reinforced 1-3 Piezocomposite under Thermal EnvironmentSmart Materials and Structures17, 055007 (13pp), 2008.
  2. S.-R. Li and R. C. Batra, Buckling of Axially Compressed Cylindrical Shells with Functionally Graded Middle LayerThin-Walled Structures44, 1039-1047, 2006.
  3. Z. G. Wei and R. C. Batra, Dynamic Buckling of Thin Thermoviscoplastic Cylindrical Shell under Radial Impulsive LoadnigThin-Walled Structures44, 1109-1117, 2006.
  4. Z. G. Wei, J. L. Yu and R. C. Batra, Dynamic Buckling of Thin Cylindrical Shells under Axial ImpactInt. J. Impact Engng.32, 575-592, 2005.
  5. Z.-Q. Cheng and R. C. Batra, Thermal Effects on Laminated Composite Shells Containing Interfacial Imperfections, J. Comp. Structures52(1), 3-11, 2001.
  6. J. S. Yang and R. C. Batra, Thickness Shear Vibrations of a Circular Cylindrical Piezoelectric ShellJ. Acoustic Soc. America97, 309- 312, 1995.

Rods

  1. S. Vidoli and R. C. Batra, Derivation of Plate and Rod Equations for a Piezoelectric Body from a Mixed Three-Dimensional Variational Principle, J. Elasticity59, 23-50, 2000.
  2. S. Krishnaswamy and R. C. Batra, On Extensional Vibration Modes of Elastic Rods of Finite Length which include the Effect of Lateral Deformation, {\it J. Sound & Vibration215, 577-586, 1998.
  3. S. Krishnaswamy and R. C. Batra, Addendum to ``On Extensional Oscillations and Waves in Elastic Rods,'' Math. & Mech. Solids3, 297-301, 1998.
  4. S. Krishnaswamy and R. C. Batra, On Extensional Oscillations and Longitudinal Waves in Elastic RodsMath. & Mech. Solids3, 277-295, 1998.